【题目】如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圆.
![]()
(1)求证:AC是⊙O的切线;
(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.
参考答案:
【答案】(1)证明见解析;(2)22.5°.
【解析】
试题分析:(1)连接AO,延长AO交⊙O于点E,则AE为⊙O的直径,连接DE,由已知条件得出∠ABC=∠CAD,由圆周角定理得出∠ADE=90°,证出∠AED=∠ABC=∠CAD,求出EA⊥AC,即可得出结论;
(2)由圆周角定理得出∠BAD=90°,由角的关系和已知条件得出∠ABC=22.5°,由(1)知:∠ABC=∠CAD,即可得出结果.
试题解析:(1)连接AO,延长AO交⊙O于点E,则AE为⊙O的直径,连接DE,如图所示:
∵∠ABC:∠ACB:∠ADB=1:2:3,∠ADB=∠ACB+∠CAD,∴∠ABC=∠CAD,∵AE为⊙O的直径,∴∠ADE=90°,∴∠EAD=90°﹣∠AED,∵∠AED=∠ABD,∴∠AED=∠ABC=∠CAD,∴∠EAD=90°﹣∠CAD,即∠EAD+∠CAD=90°,∴EA⊥AC,∴AC是⊙O的切线;
(2)∵BD是⊙O的直径,∴∠BAD=90°,∴∠ABC+∠ADB=90°,∵∠ABC:∠ACB:∠ADB=1:2:3,∴4∠ABC=90°,∴∠ABC=22.5°,由(1)知:∠ABC=∠CAD,∴∠CAD=22.5°.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线AB平移至△FEG,DE、FG相交于点H.
(1)判断线段DE、FG的位置关系,并说明理由;
(2)连结CG,求证:四边形CBEG是正方形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买50元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为
(元),在乙采摘园所需总费用为
(元),图中折线OAB表示
与x之间的函数关系.
(1)甲、乙两采摘园优惠前的草莓销售价格是每千克 元;
(2)求
、
与x的函数表达式;(3)在图中画出
与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】2016年5月6日,中国第一条具有自主知识产权的长沙磁浮线正式开通运营,该路线连接了长沙火车南站和黄花国际机场两大交通枢纽,沿线生态绿化带走廊的建设尚在进行中,届时将给乘客带来美的享受.星城渣土运输公司承包了某标段的土方运输任务,拟派出大、小两种型号的渣土运输车运输土方,已知2辆大型渣土运输车与3辆小型渣土运输车一次共运输土方31吨,5辆大型渣土运输车与6辆小型渣土运输车一次共运输土方70吨.
(1)一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨?
(2)该渣土运输公司决定派出大、小两种型号的渣土运输车共20辆参与运输土方,若每次运输土方总量不少于148吨,且小型渣土运输车至少派出2辆,则有哪几种派车方案?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有( )个

A. 4 B. 3 C. 2 D. 1
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,折叠长方形纸片的一边AD,使点D落在BC边上的点F处,已知BC=10cm,AB=8cm,求EC的长。

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列事件是必然事件的是( )
A. 若a是实数,则|a|≥0 B. 抛一枚硬币,正面朝上
C. 明天会下雨 D. 打开电视,正在播放新闻
相关试题