【题目】如图,已知线段AB=18米,
于点A,MA=6米,射线
于点B,P点从B点出发向A运动,每秒走1米,Q点从B点向D点运动,每秒走2米,P,Q同时从B出发,则出发x秒后,在线段MA上有一点C,使△CAP与△PBQ全等,则x的值为( )
![]()
A. 4 B. 6 C. 4或9 D. 6或9
参考答案:
【答案】B
【解析】
分两种情况考虑:当△APC≌△BQP时与当△APC≌△BPQ时,根据全等三角形的性质即可确定出时间.
当△APC≌△BQP时,AP=BQ,即18x=2x,
解得:x=6;
当△APC≌△BPQ时,AP=BP=12AB=9米,
此时所用时间为9秒,AC=BQ=18米,不合题意,舍去;
综上,出发6秒后,在线段MA上有一点C,使△CAP与△PBQ全等.
故选B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在我市实施“城乡环境综合治理”期间,某校组织学生开展“走出校门,服务社会”的公益活动.八年级一班王浩根据本班同学参加这次活动的情况,制作了如下的统计图表: 该班学生参加各项服务的频数、频率统计表:
服务类别
频数
频率
文明宣传员
4
0.08
文明劝导员
10
义务小警卫
8
0.16
环境小卫士
0.32
小小活雷锋
12
0.24
请根据上面的统计图表,解答下列问题:

(1)该班参加这次公益活动的学生共有名;
(2)请补全频数、频率统计表和频数分布直方图;
(3)若八年级共有900名学生报名参加了这次公益活动,试估计参加文明劝导的学生人数. -
科目: 来源: 题型:
查看答案和解析>>【题目】现正是闽北特产杨梅热销的季节,某水果零售商店分两批次从批发市场共购进杨梅40箱,已知第一、二次进货价分别为每箱50元、40元,且第二次比第一次多付款700元.
(1)设第一、二次购进杨梅的箱数分别为a箱、b箱,求a,b的值;
(2)若商店对这40箱杨梅先按每箱60元销售了x箱,其余的按每箱35元全部售完.
①求商店销售完全部杨梅所获利润y(元)与x(箱)之间的函数关系式;
②当x的值至少为多少时,商店才不会亏本.
(注:按整箱出售,利润=销售总收入﹣进货总成本) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点C、D分别在扇形AOB的半径OA、OB的延长线上,且OA=3,AC=3
﹣3,CD∥AB,并与弧AB相交于点M、N. 
(1)求线段OD的长;
(2)若sin∠C=
,求弦MN的长;
(3)在(2)的条件下,求优弧MEN的长度. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,已知抛物线y=ax2+bx的对称轴为x=
,且经过点A(2,1),点P是抛物线上的动点,P的横坐标为m(0<m<2),过点P作PB⊥x轴,垂足为B,PB交OA于点C,点O关于直线PB的对称点为D,连接CD,AD,过点A作AE⊥x轴,垂足为E.
(1)求抛物线的解析式;
(2)填空:
①用含m的式子表示点C,D的坐标:
C( , ),D( , );
②当m= 时,△ACD的周长最小;
(3)若△ACD为等腰三角形,求出所有符合条件的点P的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线y=x2﹣2bx+c
(1)若抛物线的顶点坐标为(2,﹣3),求b,c的值;
(2)若b+c=0,是否存在实数x,使得相应的y的值为1,请说明理由;
(3)若c=b+2且抛物线在﹣2≤x≤2上的最小值是﹣3,求b的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于点E,AD=8cm,BC=4cm,AB=5cm.从初始时刻开始,动点P,Q 分别从点A,B同时出发,运动速度均为1cm/s,动点P沿A﹣B﹣﹣C﹣﹣E的方向运动,到点E停止;动点Q沿B﹣﹣C﹣﹣E﹣﹣D的方向运动,到点D停止,设运动时间为xs,△PAQ的面积为ycm2 , (这里规定:线段是面积为0的三角形)

解答下列问题:
(1)当x=2s时,y=cm2;当x=
s时,y=cm2 .
(2)当5≤x≤14 时,求y与x之间的函数关系式.
(3)当动点P在线段BC上运动时,求出
S梯形ABCD时x的值.
(4)直接写出在整个运动过程中,使PQ与四边形ABCE的对角线平行的所有x的值.
相关试题