【题目】如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到.若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=
HM;③无论点M运动到何处,∠CHM一定大于135°.其中正确结论的序号为_____.
![]()
参考答案:
【答案】①②③
【解析】先判定△MEH≌△DAH(SAS),即可得到△DHM是等腰直角三角形,进而得出DM=
HM;依据当∠DHC=60°时,∠ADH=60°﹣45°=15°,即可得到Rt△ADM中,DM=2AM,即可得到DM=2BE;依据点M是边BA延长线上的动点(不与点A重合),且AM<AB,可得∠AHM<∠BAC=45°,即可得出∠CHM>135°.
由题可得,AM=BE,
∴AB=EM=AD,
∵四边形ABCD是正方形,EH⊥AC,
∴EM=AH,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH,
∴EH=AH,
∴△MEH≌△DAH(SAS),
∴∠MHE=∠DHA,MH=DH,
∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形,
∴DM=
HM,故②正确;
当∠DHC=60°时,∠ADH=60°﹣45°=15°,
∴∠ADM=45°﹣15°=30°,
∴Rt△ADM中,DM=2AM,
即DM=2BE,故①正确;
∵点M是边BA延长线上的动点(不与点A重合),且AM<AB,
∴∠AHM<∠BAC=45°,
∴∠CHM>135°,故③正确,
故答案为:①②③.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出( )

A.直角三角形的面积
B.最大正方形的面积
C.较小两个正方形重叠部分的面积
D.最大正方形与直角三角形的面积和
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠AFD=∠1,AC∥DE.
(1)试说明:DF∥BC;
(2)若∠1=68°,DF平分∠ADE,求∠B的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠BAC=90°,且BA=9,AC=12,点D是斜边BC上的一个动点,过点D分别作DE⊥AB于点E,DF⊥AC于点F,点G为四边形DEAF对角线交点,则线段GF的最小值为_______.

-
科目: 来源: 题型:
查看答案和解析>>【题目】四张扑克牌(方块2、黑桃4、黑桃5、梅花5)的牌面如图l,将扑克牌洗匀后,如图2背面朝上放置在桌面上.小亮和小明设计的游戏规则是两人同时抽取一张扑克牌,两张牌面数字之和为奇数时,小亮获胜;否则小明获胜.请问这个游戏规则公平吗?并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】数学老师在课堂上展示一矩形纸片,如图,在矩形ABCD中,AB=6cm,BC=8cm.他要将此矩形做一个梯形教具,现进行如下操作:
先将矩形ABCD的点D折叠到对角线AC上的点F处,折痕为CE,再将折叠的部分裁掉;

问:(1)所裁部分DE的长;
(2)所裁成的梯形ABCE的面积是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下面材料:
小明遇到这样一个问题:如图1,在△ABC中,DE∥BC分别交AB于D,交AC于E. 已知CD⊥BE,CD=3,BE=5,求BC+DE的值.
小明发现,过点E作EF∥DC,交BC延长线于点F,构造△BEF,经过推理和计算能够使问题得到解决(如图2).

(1)求证:DE=CF
(2)求BC+DE的值
(3)参考小明思考问题的方法,解决问题:
如图3,已知ABCD和矩形ABEF,AC与DF交于点G,AC=BF=DF,求∠AGF的度数.
相关试题