【题目】阅读下面的材料:
如图1,在数轴上A点衰示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB﹣b﹣a.
请用上面的知识解答下面的问题:
如图2,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B点,然后向右移动7cm到达C点,用1个单位长度表示1cm.
(1)请你在数轴上表示出A.B.C三点的位置:
(2)点C到点人的距离CA= cm;若数轴上有一点D,且AD=4,则点D表示的数为 ;
(3)若将点A向右移动xcm,则移动后的点表示的数为 ;(用代数式表示)
(4)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动.设移动时间为t秒,
试探索:CA﹣AB的值是否会随着t的变化而改变?请说明理由.
![]()
参考答案:
【答案】(1)如图所示(2)5,﹣5或3(3)﹣1+x(4)CA﹣AB的值不会随着t的变化而变化
【解析】试题分析:(1)根据题意容易画出图形;(2)由题意容易得出CA的长度;设D表示的数为a,由绝对值的意义容易得出结果;(3)将点A向右移动xcm,则移动后的点表示的数为-1+x;(4)表示出CA和AB,再相减即可得出结论.
试题解析:(1)如图所示:
![]()
(2)CA=4﹣(﹣1)=4+1=5(cm);
设D表示的数为a,
∵AD=4,
∴|﹣1﹣a|=4,
解得:a=﹣5或3,
∴点D表示的数为﹣5或3;
故答案为:5,﹣5或3;
(3)将点A向右移动xcm,则移动后的点表示的数为﹣1+x;
故答案为:﹣1+x;
(4)CA﹣AB的值不会随着t的变化而变化,理由如下:
根据题意得:CA=(4+4t)﹣(﹣1+t)=5+3t,AB=(﹣1+t)﹣(﹣3﹣2t)=2+3t,
∴CA﹣AB=(5+3t)﹣(2+3t)=3,
∴CA﹣AB的值不会随着t的变化而变化
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,线段AB的长为20,点D在AB上,△ACD是边长为8的等边三角形,过点D作与CD垂直的射线DP,过DP上一动点G(不与D重合)作矩形CDGH,记矩形CDGH的对角线交点为O,连接OB,则线段BO的最小值为( )

A. 10 B. 6 C. 8
D. 6
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列命题中,真命题是( ) .
A. 对角线相等的四边形是矩形;
B. 对角线互相垂直的四边形是菱形;
C. 对角线互相平分的四边形是平行四边形;
D. 对角线互相垂直平分的四边形是正方形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,D是△ABC的边AB上一点,E是AC的中点,过点C作CF//AB,交DE的延长线于点F.

求证:AB=CF+BD.
-
科目: 来源: 题型:
查看答案和解析>>【题目】李老师为锻炼身体一直坚持步行上下班.已知学校到李老师家总路程为2000米.一天,李老师下班后,以45米/分的速度从学校往家走,走到离学校900米时,正好遇到一个朋友,停下又聊了半小时,之后以110米/分的速度走回了家.李老师回家过程中,离家的路程s(米)与所用时间t(分)之间的关系如图所示.
(1)求a,b,c的值;
(2)求李老师从学校到家的总时间.

-
科目: 来源: 题型:
查看答案和解析>>【题目】算24点游戏是一种使用扑克牌来进行的益智类游戏,游戏内容是:从一副扑克牌中抽去大小王剩下52张,任意抽取4张牌,把牌面上的数运用你所学过的加、减、乘、除、乘方运算得出24.每张牌都必须使用一次,但不能重复使用.
(1)如图1,在玩“24点”游戏时,小明抽到以下4张牌:

请你帮他写出运算结果为24的算式:(写出2个); 、 ;
(2)如图2,如果
、
表示正,
.
表示负,J表示11点,Q表示12点.请你用下列4张牌表示的数写出运算结果为24的算式(写出1个): . -
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的二次函数y=x2+(k﹣1)x+3,其图象经过点(1,8).
(1)求k的值;
(2)求出该函数图象的顶点坐标和最小值.
相关试题