【题目】四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,如果AF=4,AB=7,
![]()
(1)指出旋转中心和旋转角度;
(2)求DE的长度;
(3)BE与DF的位置关系如何?
参考答案:
【答案】(1)旋转角度为90°或270°;(2)DE= 3;(3)BE与DF是垂直关系.
【解析】试题先根据正方形的性质得到:△AFD≌△AEB,从而得出等量关系AE=AF=4,∠EAF=90°,∠EBA=∠FDA,找到旋转中心和旋转角度.这些等量关系即可求出DE=AD﹣AE=7﹣4=3;BE⊥DF.
解:(1)根据正方形的性质可知:△AFD≌△AEB,即AE=AF=4,∠EAF=90°,∠EBA=∠FDA;
可得旋转中心为点A;旋转角度为90°或270°;
(2)DE=AD﹣AE=7﹣4=3;
(3)∵∠EAF=90°,∠EBA=∠FDA,
∴延长BE与DF相交于点G,则∠GDE+∠DEG=90°,
∴BE⊥DF,
即BE与DF是垂直关系.
-
科目: 来源: 题型:
查看答案和解析>>【题目】四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,如果AF=4,AB=7,

(1)指出旋转中心和旋转角度;
(2)求DE的长度;
(3)BE与DF的位置关系如何?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于( )

A.
B.
C.3
D.4 -
科目: 来源: 题型:
查看答案和解析>>【题目】现代互联网技术的广泛应用,催生了快递行业的高速发展.阜阳市某家快递公司,2017年3月份与5月份完成投递的快递总件数分别为10万件和12.1万件.现假定该公司每月投递的快递总件数的增长率相同.
(1)求该快递公司投递快递总件数的月平均增长率?
(2) 如果平均每人每月最多可投递快递0.6万件,那么该公司现有的21名快递投递业务员能否完成2017年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线l的解析式为y=﹣
x+b,它与坐标轴分别交于A、B两点,其中点B坐标为(0,4).(1)求出A点的坐标;
(2)在第一象限的角平分线上是否存在点Q使得∠QBA=90°?若存在,求点Q的坐标;若不存在,请说明理由.
(3)动点C从y轴上的点(0,10)出发,以每秒1cm的速度向负半轴运动,求出点C运动所有的时间t,使得△ABC为轴对称图形(直接写答案即可)

-
科目: 来源: 题型:
查看答案和解析>>【题目】河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是( )
A. 中位数是12.7% B. 众数是15.3%
C. 平均数是15.98% D. 方差是0
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将正△ABC分割成m个边长为1的小正三角形和一个黑色菱形,这个黑色菱形可分割成n个边长为1的小三角形,若
=
,则△ABC的边长是 . 
相关试题