【题目】如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°. ![]()
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为4,求图中阴影部分的面积.
参考答案:
【答案】
(1)解:连接OC,
![]()
∵AC=CD,∠ACD=120°,
∴∠A=∠D=30°,
∵OA=OC,
∴∠ACO=∠A=30°,
∴∠COD=60°
∴∠OCD=180°﹣∠COD﹣∠D=90°
∴OC⊥CD
∴CD是⊙O的切线;
(2)解:由(1)可知:∠COD=60°,
∴S扇形BOC=
= ![]()
在Rt△OCD中,
tan60°= ![]()
∴CD=4
,
∴S△OCD=
OC×CD=8
,
∴阴影部分面积为:8
﹣ ![]()
【解析】(1)连接OC,易证∠A=∠D=30°,由于OA=OC,所以∠ACO=∠A=30°,从而可知∠OCD=90°,即OC⊥CD.(2)分别求出扇形BOC与直角三角形OCD的面积即可求出阴影部分面积.
【考点精析】本题主要考查了扇形面积计算公式的相关知识点,需要掌握在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2)才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A类(12≤m≤15),B类(9≤m≤11),C类(6≤m≤8),D类(m≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:

(1)本次抽取样本容量为 , 扇形统计图中A类所对的圆心角是度;
(2)请补全条形统计图;
(3)若该校九年级男生有600名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名? -
科目: 来源: 题型:
查看答案和解析>>【题目】在四张背面完全相同的纸牌A、B、C、D中,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张(不放回),再从余下的3张纸牌中摸出一张.

(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);
(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,小华在A处利用高为1.5米的测角仪AB测得楼EF顶部E的仰角为30°,然后前进30米到达C处,又测得顶部E的仰角为60°,求大楼EF的高度.(结果精确到0.1米,参考数据
=1.732)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.
(1)求证:四边形BFEP为菱形;
(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;
①当点Q与点C重合时(如图2),求菱形BFEP的边长;
②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某校九年级(1)班准备购买大课间活动器材呼啦圈和跳绳,已知购买1根跳绳和2个呼啦圈要35元,购买2根跳绳和1个呼啦圈要25元.
(1)求每根跳绳、每个呼啦圈各多少元?
(2)根据班级实际情况,需购买跳绳和呼啦圈的总数量为30,总费用不超过300元,但不低于280元,请你通过计算求出有几种购买方案,哪种方案费用最低. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知线段MN=8,C是线段MN上一动点,在MN的同侧分别作等边△CMD和等边△CNE.
(1)如图①,连接DN与EM,两条线段相交于点H,求证ME=DN,并求∠DHM的度数;
(2)如图②,过点D、E分别作线段MN的垂线,垂足分别为F、G,问:在点C运动过程中,DF+EG的长度是否为定值,如果是,请求出这个定值,如果不是请说明理由;
(3)当点C由点M移到点N时,点H移到的路径长度为(直接写出结果)
相关试题