【题目】如图,在平面直角坐标系中,△AOB的顶点O为坐标原点,点A的坐标为(4,0),点B的坐标为(0,1),点C为边AB的中点,正方形OBDE的顶点E在x轴的正半轴上,连接CO,CD,CE.
(1)线段OC的长为 ;
(2)求证:△CBD≌△COE;
(3)将正方形OBDE沿x轴正方向平移得到正方形O1B1D1E1,其中点O,B,D,E的对应点分别为点O1,B1,D1,E1,连接CD,CE,设点E的坐标为(a,0),其中a≠2,△CD1E1的面积为S.
①当1<a<2时,请直接写出S与a之间的函数表达式;
②在平移过程中,当S=
时,请直接写出a的值.
![]()
参考答案:
【答案】(1)
;(2)详见解析;(3)①S=﹣
a+1;②当S=
时,a=
或
.
【解析】
试题分析:(1)由点A的坐标为(4,0),点B的坐标为(0,1),根据勾股定理求得AB的长,再由点C为边AB的中点,根据直角三角形斜边的中线等于斜边的一半,即可求得线段OC的长;(2)由四边形OBDE是正方形,直角三角形斜边的中线等于斜边的一半,易得BD=OE,BC=OC,∠CBD=∠COE,即可证得:△CBD≌△COE;(3)①首先根据题意画出图形,然后过点C作CH⊥D1E1于点H,可求得△CD1E1的高与底,继而求得答案;
②分别从1<a<2与a>2去分析求解即可求得答案.
试题解析:(1)∵点A的坐标为(4,0),点B的坐标为(0,1),
∴OA=4,OB=1,
∵∠AOB=90°,
∴AB=
,
∵点C为边AB的中点,
∴OC=
AB=
;
(2)证明:∵∠AOB=90°,点C是AB的中点,
∴OC=BC=
AB,
∴∠CBO=∠COB,
∵四边形OBDE是正方形,
∴BD=OE,∠DBO=∠EOB=90°,
∴∠CBD=∠COE,
在△CBD和△COE中,
,
∴△CBD≌△COE(SAS);
(3)①解:过点C作CH⊥D1E1于点H,
∵C是AB边的中点,
∴点C的坐标为:(2,
)
∵点E的坐标为(a,0),1<a<2,
∴CH=2﹣a,
∴S=
D1E1CH=
×1×(2﹣a)=﹣
a+1;
②当1<a<2时,S=﹣
a+1=
,
解得:a=
;
当a>2时,同理:CH=a﹣2,
∴S=
D1E1CH=
×1×(a﹣2)=
a﹣1,
∴S=
a﹣1=
,
解得:a=
,
综上可得:当S=
时,a=
或
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】把边长为3,5,7的两个全等三角形拼成四边形,一共能拼成____种不同的四边形,其中有____个平行四边形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
(1)求证:△ADC≌△CEB;
(2)若AD=1,BE=2,求△ABC的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,∠B,∠C的平分线交于点O,D是外角与内角平分线交点,E是外角平分线交点,若∠BOC=120°,则∠D=( )

A. 15° B. 20° C. 25° D. 30°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在不等边△ABC中,PM⊥AB于点M,PN⊥AC于点N,且PM=PN,Q在AC上,PQ=QA,MP=3,△AMP的面积是6,下列结论:①AM<PQ+QN,②QP∥AM,③△BMP≌△PQC,④∠QPC+∠MPB=90°,⑤△PQN的周长是7,其中正确的有( )个.

A. 1 B. 2 C. 3 D. 4
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个三角形的第一条边长为(x+2)cm,第二条边长比第一条边长小5cm,第三条边长是第二条边长的2倍.
(1)用含x的代数式表示这个三角形的周长;
(2)计算当x为6cm时这个三角形的周长. -
科目: 来源: 题型:
查看答案和解析>>【题目】下列图形中,①圆;②平行四边形;③长方形;④等腰三角形.其中是中心对称图形有______个.
相关试题