【题目】为了解学生的艺术特长发展情况,某校音乐组决定围绕“在舞蹈、乐器、声乐、戏曲、其它活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.![]()
请你根据统计图解答下列问题:
(1)在这次调查中一共抽查了多少名学生?其中,喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为多少?喜欢“戏曲”活动项目的人数是多少人?
(2)若在“舞蹈、乐器、声乐、戏曲”活动项目任选两项设立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项活动的概率.
参考答案:
【答案】
(1)
解:根据喜欢声乐的人数为8人,得出总人数=8÷16%=50;
喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为:
×100%=24%;
喜欢“戏曲”活动项目的人数是:50-12-16-8-10=4,故答案为:50,24%,4。
(2)
(用树状图)设舞蹈、乐器、声乐、戏曲的序号依次是①②③④, ![]()
故恰好选中“舞蹈、声乐”两项活动的概率是
;
(用列表法)
舞蹈 | 乐器 | 声乐 | 戏曲 | |
舞蹈 | 舞蹈、乐器 | 舞蹈、声乐 | 舞蹈、戏曲 | |
乐器 | 乐器、舞蹈 | 乐器、声乐 | 乐器、戏曲 | |
声乐 | 声乐、舞蹈 | 声乐、乐器 | 声乐、戏曲 | |
戏曲 | 戏曲、舞蹈 | 戏曲、乐器 | 戏曲、声乐 |
故恰好选中“舞蹈、声乐”两项活动的概率是
.
【解析】本题主要考查条形统计图与扇形统计图的综合运用,用到的知识点为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=
.总体数目=部分数目÷相应百分比.(1)总人数=参加某项的人数÷所占比例,用喜欢“舞蹈”活动项目的人数除以总人数再乘100%,即可求出喜欢“舞蹈”活动项目的人数占抽查总人数的百分比,用总人数减去其他4个小组的人数求出喜欢“戏曲”活动项目的人数;(2)根据频率的计算方法,用选中“舞蹈、声乐”这两项活动的数除以总数计算即可解答.
【考点精析】认真审题,首先需要了解列表法与树状图法(当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率).
-
科目: 来源: 题型:
查看答案和解析>>【题目】将长度为8厘米的木棍截成三段,每段长度均为整数厘米.如果截成的三段木棍长度分别相同算作同一种截法(如:5,2,1和1,5,2),那么截成的三段木棍能构成三角形的概率是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】现有5个质地、大小完全相同的小球上分别标有数字-1,-2,1,2,3.先将标有数字-2,1,3的小球放在第一个不透明的盒子里,再将其余小球放在第二个不透明的盒子里.现分别从两个盒子里各随即取出一个小球.
(1)请利用列表或画树状图的方法表示取出的两个小球上数字之和所有可能的结果;
(2)求取出的两个小球上的数字之和等于0的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两人在5次打靶测试中命中的环数如下:
甲:8,8,7,8,9;乙:5,9,7,10,9.
(1)填写下表:

(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?
(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差如何变化?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.
(1)求证:平行四边形ABCD是矩形;
(2)请添加一个条件使矩形ABCD为正方形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】一个不透明的布袋里装有4个大小,质地都相同的乒乓球,球面上分别标有数字1,-2,3,-4,小明先从布袋中随机摸出一个球(不放回去),再从剩下的3个球中随机摸出第二个乒乓球.
(1)共有几种可能的结果?
(2)请用画树状图或列表的方法求两次摸出的乒乓球的数字之积为偶数的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】仔细阅读下面例题,解答问题
例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.
解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n),
则x2﹣4x+m=x2+(n+3)x+3n
∴

解得:n=﹣7,m=﹣21.
∴另一个因式为(x﹣7),m的值为﹣21.
问题:
(1)若二次三项式x2﹣5x+6可分解为(x﹣2)(x+a),则a= ;
(2)若二次三项式2x2+bx﹣5可分解为(2x﹣1)(x+5),则b= ;
(3)仿照以上方法解答下面问题:若二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.
相关试题