【题目】某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE按如图(1)所示位置放置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.![]()
(1)求证:AM=AN;
(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.
参考答案:
【答案】解;(1)证明:∵用两块完全相同的且含60°角的直角三角板ABC与AFE按如图(1)所示位置放置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),
∴AB=AF,∠BAM=∠FAN,
在△ABM和△AFN中,
,
∴△ABM≌△AFN(ASA),
∴AM=AN;
(2)解:当旋转角α=30°时,四边形ABPF是菱形.
理由:连接AP,
∵∠α=30°,
∴∠FAN=30°,
∴∠FAB=120°,
∵∠B=60°,
∴AF∥BP,
∴∠F=∠FPC=60°,
∴∠FPC=∠B=60°,
∴AB∥FP,
∴四边形ABPF是平行四边形,
∵AB=AF,
∴平行四边形ABPF是菱形.
【解析】(1)根据旋转的性质得出AB=AF,∠BAM=∠FAN,进而得出△ABM≌△AFN得出答案即可;
(2)利用旋转的性质得出∠FAB=120°,∠FPC=∠B=60°,即可得出四边形ABPF是平行四边形,再利用菱形的判定得出答案.
【考点精析】本题主要考查了菱形的判定方法的相关知识点,需要掌握任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】 如图,Rt△ABC中,∠C = 90°,把Rt△ABC绕着B点逆时针旋转,得到Rt△DBE,点E在AB上.

(1)若∠BDA = 70°,求∠BAC的度数.
(2)若BC = 8,AC = 6,求△ABD中AD边上的高. -
科目: 来源: 题型:
查看答案和解析>>【题目】王老师给学生出了一道题:
求(2a+b)(2a﹣b)+2(2a﹣b)2+(2ab2﹣16a2b)÷(﹣2a)的值,其中a=
,b=﹣1,同学们看了题目后发表不同的看法.小张说:条件b=﹣1是多余的.”小李说:“不给这个条件,就不能求出结果,所以不多余.”(1)你认为他们谁说的有道理?为什么?
(2)若xm等于本題计算的结果,试求x2m的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2011次运动后,动点P的坐标是____________。

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,
b满足 |a+2|+
=0,点C的坐标为(0,3).(1)求a,b的值及S三角形ABC;
(2)若点M在x轴上,且S三角形ACM=
S三角形ABC,试求点M的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,平行四边形ABCD,点E在AD上,连接CE,点F为CE中点,连接DF,并且DF=EF.
(1)求证:平行四边形ABCD是矩形;
(2)如图2,过点B作BH⊥CE,垂足为H,连接AH,若∠AHB=45°,求证:AE=CD;
(3)如图3,在(2)的条件下,过点A作AK⊥BH,垂足为N,AK与BC交于点K,若四边形ABHE的面积为128,BK=2
,求线段HF的长度.

-
科目: 来源: 题型:
查看答案和解析>>【题目】兴华商店准备购进甲、乙两种书包出售,每个甲种书包的进价比每个乙种书包的进价多20元,购进3个甲种书包的费用和购进4个乙种书包的费用相等,现计划购进两种书包共100个,其中乙种书包不少于35个.
(1)甲种书包进价为__________元/个,乙种书包进价为__________元/个;
(2)若甲种书包每个售价120元,乙种书包每个售价90元,且购进这100个书包的费用不低于7200元,如果这100个书包都可售完,那么兴华商店如何进货才能获得最大利润?最大利润是多少?
相关试题