【题目】某销售公司推销一种产品,设x(件)是推销产品的数量,y(元)是付给推销员的月报酬.公司付给推销员的月报酬的两种方案如图所示,推销员可以任选一种与公司签订合同,看图解答下列问题:
(1)求每种付酬方案y关于x的函数表达式;
(2)当选择方案一所得报酬高于选择方案二所得报酬时,求x的取值范围.
![]()
参考答案:
【答案】(1 y=40x;y=20x+600;(2)方案一所得报酬高于方案二.
【解析】试题分析:(1)由图,已知两点,可根据待定系数法列方程,求出函数关系式;
(2)列出方程得出两直线的相交点的坐标,即可选择方案一所得报酬高于选择方案二所得报酬时x的取值范围.
试题解析:(1)设方案一的解析式为y=kx,把(40,1600)代入解析式,可得k=40,
故解析式为y=40x;
设方案二的解析式为y=ax+b,把(40,1400)和(0,600)代入解析式,
可得a=20,b=600,
故解析式为y=20x+600;
(2)根据两直线相交可得方程40x=20x+600,解得x=30.
根据两函数图象可知,当x>30时,选择方案一所得报酬高于选择方案二所得报酬.
-
科目: 来源: 题型:
查看答案和解析>>【题目】先化简,再求值:
(1)(1+a)(1-a)+(a-2)2,其中a=
;(2)(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中x=-3.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,抛物线y=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D.

(1)请直接写出点A,C,D的坐标;
(2)如图(1),在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;
(3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数y=ax2+bx+c的图象如图所示,则下列结论不正确的是( )

A.a<0
B.c>0
C.a+b+c>0
D.b2﹣4ac>0 -
科目: 来源: 题型:
查看答案和解析>>【题目】为建设资源节约型、环境友好型社会,克服因干旱而造成的电力紧张困难,切实做好节能减排工作.某地决定对居民家庭用电实行“阶梯电价”,电力公司规定:居民家庭每月用电量在80千瓦时以下(含80千瓦时,1千瓦时俗称1度)时,实行“基本电价”;当居民家庭月用电量超过80千瓦时时,超过部分实行“提高电价”.
(1)小张家今年2月份用电100千瓦时,上缴电费68元;5月份用电120千瓦时,上缴电费88元.求“基本电价”和“提高电价”分别为多少元/千瓦时;
(2)若6月份小张家预计用电130千瓦时,请预算小张家6月份应上缴的电费.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,⊙P与x轴相切,与y轴相交于A(0,2),B(0,8),则圆心P的坐标是( )

A.(5,3)
B.(5,4)
C.(3,5)
D.(4,5) -
科目: 来源: 题型:
查看答案和解析>>【题目】一次函数y=kx+b(k≠0)的图象由直线y=3x向下平移得到,且过点A(1,2).
(1)求一次函数的解析式;
(2)求直线y=kx+b与x轴的交点B的坐标;
(3)设坐标原点为O,一条直线过点B,且与两条坐标轴围成的三角形的面积是
,这条直线与y轴交于点C,求直线AC对应的一次函数的解析式.
相关试题