【题目】某工厂生产A、B两种产品共50件,其生产成本与利润如下表:
A种产品 | B种产品 | |
成本 (万元/件) | 0.6 | 0.9 |
利润 (万元/件) | 0.2 | 0.4 |
若该工厂计划投入资金不超过40万元,且希望获利超过16万元,问工厂有哪几种生产方案?哪种生产方案获利润最大?最大利润是多少?
参考答案:
【答案】工厂有三种生产方案:①生产A种产品17件,生产B种产品33件;②生产A种产品18件,生产B种产品32件;③生产A种产品19件,生产B种产品31件。方案①获利润最大,最大利润是16.6万元。
【解析】
一元一次不等式组和一次函数的应用。
根据题目的已知条件建立不等式组的数学模型和一次函数的数学模型求解。
解:设生产A种产品x件,则B种产品为50-x件,
根据题意有:![]()
不等式组的解集为:
。
∵x为整数,∴x=17或18或19。
生产方案如下:①生产A种产品17件,生产B种产品33件;
②生产A种产品18件,生产B种产品32件;
③生产A种产品19件,生产B种产品31件。
设利润为W,则
,
∵-0.2<0,∴W随x的增大而减小。∴当x=17时,
。
答:工厂有三种生产方案:①生产A种产品17件,生产B种产品33件;②生产A种产品18件,生产B种产品32件;③生产A种产品19件,生产B种产品31件。方案①获利润最大,最大利润是16.6万元。
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点O.
(1)求证:△ABE≌△CDF;
(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F,点O为AC的中点.

(1)当点P与点O重合时如图1,易证OE=OF(不需证明)
(2)直线BP绕点B逆时针方向旋转,当∠OFE=30°时,如图2、图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明. -
科目: 来源: 题型:
查看答案和解析>>【题目】某校九年级10个班师生举行毕业文艺汇演,每班2个节目,有歌唱与舞蹈两类节目,年级统计后发现歌唱类节目数比舞蹈类节目数的2倍少4个.
(1)九年级师生表演的歌唱与舞蹈类节目数各有多少个?
(2)该校七、八年级师生有小品节目参与,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟、6分钟、8分钟,预计所有演出节目交接用时共花15分钟.若从20:00开始,22:30之前演出结束,问参与的小品类节目最多能有多少个?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.
(1)求证:△BCE≌△DCF;
(2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B在x轴的正半轴上.∠OAB=90°且OA=AB,OB,OC的长分别是一元二次方程x2﹣11x+30=0的两个根(OB>OC).

(1)求点A和点B的坐标.
(2)点P是线段OB上的一个动点(点P不与点O,B重合),过点P的直线l与y轴平行,直线l交边OA或边AB于点Q,交边OC或边BC于点R.设点P的横坐标为t,线段QR的长度为m.已知t=4时,直线l恰好过点C.当0<t<3时,求m关于t的函数关系式.
(3)当m=3.5时,请直接写出点P的坐标.
相关试题