【题目】已知二次函数y=ax2+bx+c满足下表:下列说法:①该函数图像为开口向下的抛物线;②该函数图像的顶点坐标为:(1,3);③方程ax2+bx+c=-2在2与3之间存在一个根;④A(-2018,m),B(2019,n)在该二次函数图像上,则m>n.其中正确的是_______(只需写出序号).
x | … | -1 | 0 | 1 | 2 | … |
y | … | -5 | 1 | 3 | 1 | … |
参考答案:
【答案】①②③
【解析】
先根据x=0时y=1;x=1时y=3;x=2时,y=1求出a、b、c的值,进而得出二次函数的解析式,再根据二次函数的性质对各小题进行逐一判断即可.
解:由题表可知,x=0时y=1;x=1时y=3;x=2时,y=1,
∴
,解得:
,
∴该二次函数的解析式为:y=﹣2x2+4x+1,
∵a=﹣2<0,
∴抛物线图象开口向下,故①正确;
∵y=﹣2x2+4x+1=﹣2(x﹣1)2+3,
∴该函数图像的顶点坐标为:(1,3),故②正确;
∵抛物线的对称轴为直线x=1,
∴当x=3时,y=﹣5,
∴当y=﹣2时,﹣1<x<0或2<x<3,故③正确;
∵∣﹣2018﹣1∣=2019>∣2019﹣1∣=2018,
∴m<n,故④错误.
故答案为:①②③.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,BC=5,CD=6,∠DCB=60°,等边△PMN(N为固定点)的边长为x,边MN在直线BC上,NC=8.将直角梯形ABCD绕点C按逆时针方向旋转到①的位置,再绕点D1按逆时针方向旋转到②的位置,如此旋转下去.
(1)将直角梯形按此方法旋转四次,如果等边△PMN的边长为x≥5+3
,求梯形与等边三角形的重叠部分的面积;(2)将直角梯形按此方法旋转三次,如果梯形与等边三角形的重叠部分的面积是
,求等边△PMN的边长x的范围.(3)将直角梯形按此方法旋转三次,如果梯形与等边三角形的重叠部分的面积是梯形面积的一半,求等边△PMN的边长x.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,C、D是以AB为直径的⊙O上的点,
,弦CD交AB于点E.(1)当PB是⊙O的切线时,求证:∠PBD=∠DAB;
(2)求证:BC2﹣CE2=CEDE;
(3)已知OA=4,E是半径OA的中点,求线段DE的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.
(1)求顶点D的坐标(用含a的代数式表示);
(2)若以AD为直径的圆经过点C.
①求抛物线的函数关系式;
②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;
③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在创建“书香校园”活动中,为了解学生的读书情况,某校抽样调查了部分同学在一周内的阅读时间,绘制如下统计图.根据图中信息,解答下列问题:
(1)被抽查学生阅读时间的中位数为_______h,众数为________h;平均数为________h:
(2)若该校共有800名学生,请你估算该校一周内阅读时间不少于3h的学生人数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(-2,2),B(-4,0),C(-4;-4),
(1)在y轴右侧,以O为位似中心,画出△A'B'C′,使它与△ABC的相似比为1:2;
(2)根据(1)的作图,sin∠A'C'B′=__________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】下图为水平放置于桌面上的台灯的示意图,已知灯臂AB=18cm,灯罩BC=30cm,∠BAM=60°,∠ABC=90°,求点C到桌面的距离CD(精确到0.1cm).参考数据:
≈1.41,
≈1.73.
相关试题