【题目】如图所示,在四边形ABDC中,∠A=90°,AB=9,AC=12,BD=8,CD=17.
(1)连接BC,求BC的长;
(2)求四边形ABDC的面积.
![]()
参考答案:
【答案】(1)15;(2) 114.
【解析】(1)、根据Rt△ABC的勾股定理得出BC的长度;(2)、根据三角形三边关系得出△BCD为直角三角形,然后根据S四边形ABDC=SRt△ABC+SRt△BCD得出答案.
(1)∵∠A=90°,∴△ABC是直角三角形.
在Rt△ABC中,AB=9,AC=12, ∴BC=
=15.
(2)∵BD=8,CD=17,由(1)可知BC=15, ∴BC2+BD2=152+82=172=CD2,
∴△BCD是直角三角形,且∠CBD=90°,
∴S四边形ABDC=SRt△ABC+SRt△BCD=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=10,AC=2
,BC边上的高AD=6,则另一边BC等于_______.【答案】10或6
【解析】试题解析:根据题意画出图形,如图所示,

如图1所示,AB=10,AC=2
,AD=6,在Rt△ABD和Rt△ACD中,
根据勾股定理得:BD=
=8,CD=
=2,此时BC=BD+CD=8+2=10;
如图2所示,AB=10,AC=2
,AD=6,在Rt△ABD和Rt△ACD中,
根据勾股定理得:BD=
=8,CD=
=2,此时BC=BD-CD=8-2=6,
则BC的长为6或10.
【题型】填空题
【结束】
12【题目】在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1 ______ y2.(填“>”“<”或“=”)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,OA是⊙O的半径,BC是⊙O的弦,且BC⊥OA,过BC的延长线上一点D作⊙O的切线DE,切点为E,连接AB,BE,若∠BDE=52°,则∠ABE的度数是( )

A.52°
B.58°
C.60°
D.64° -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD中,AB=8,AD=5,点E
为DC边上一个动点,把△ADE沿AE折叠,点D的对应点D’落在矩形ABCD的对称轴上时,DE的长为____________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,三角形DEF是三角形ABC经过某种变换得到的图形,点A与点D,点B与点E,点C与点F分别是对应点,观察点与点的坐标之间的关系,解答下列问题:

(1)分别写出点A与点D,点B与点E,点C与点F的坐标,并说说对应点的坐标有哪些特征;
(2)若点P(a+3,4-b)与点Q(2a,2b-3)也是通过上述变换得到的对应点,求a,b的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCO在平面直角坐标系中,且A(1,2),B(5,4),C(6,0),O(0,0).
(1)求四边形ABCO的面积;
(2)将四边形ABCO四个顶点的横坐标都减去3,同时纵坐标都减去2,画出得到的四边形A′B′C′O′,你能从中得到什么结论?
(3)直接写出四边形A′B′C′O′的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD和正方形A1B1C1D1的对角线(正方形相对顶点之间所连的线段)BD,B1D1都在x轴上,O,O1分别为正方形ABCD和正方形A1B1C1D1的中心(正方形对角线的交点称为正方形的中心),O为平面直角坐标系的原点.OD=3,O1D1=2.
(1)如果O1在x轴上平移时,正方形A1B1C1D1也随之平移,其形状、大小没有改变,当中心O1在x轴上平移到两个正方形只有一个公共点时,求此时正方形A1B1C1D1各顶点的坐标;
(2)如果O在x轴上平移时,正方形ABCD也随之平移,其形状、大小没有改变,当中心O在x轴上平移到两个正方形公共部分的面积为2个平方单位时,求此时正方形ABCD各顶点的坐标.

相关试题