【题目】如图,在矩形纸片ABCD中,已知AD=8,折叠纸片,使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为( )![]()
A.3
B.4
C.5
D.6
参考答案:
【答案】D
【解析】解:∵四边形ABCD是矩形,AD=8,
∴BC=8,
∵△AEF是△AEB翻折而成,
∴BE=EF=3,AB=AF,△CEF是直角三角形,
∴CE=8﹣3=5,
在Rt△CEF中,CF=
=
=4,
设AB=x,
在Rt△ABC中,AC2=AB2+BC2 , 即(x+4)2=x2+82 , 解得x=6,
故选:D.
【考点精析】本题主要考查了矩形的性质和翻折变换(折叠问题)的相关知识点,需要掌握矩形的四个角都是直角,矩形的对角线相等;折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知|a|=7,|b|=3,且a+b>0,则a=_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】代数式3(a+2)用数学语言表示
-
科目: 来源: 题型:
查看答案和解析>>【题目】某产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点在原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为w万元.(毛利润=销售额-生产费用)
(1)请直接写出y与x以及z与x之间的函数关系式;
(2)求w与x之间的函数关系式;并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?
(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,点O为坐标原点,点P(-2,a), Q(-2,a-5),若△POQ是直角三角形,则点P的坐标不可能为( )
A. (-2,4 )B. (-2, 0)C. (-2, 5)D. (-2,2)
-
科目: 来源: 题型:
查看答案和解析>>【题目】说出下列代数式的意义:
(1)a2-b2;
(2)(a-b)2 . -
科目: 来源: 题型:
查看答案和解析>>【题目】某商店在一次买卖中,同时卖出两种货物,每种货物的售价均为1200元.若按成本计算,一种货物盈利20%,另一种亏本20%,则这次交易商店( )
A.赔100元
B.赚50元
C.赚100元
D.不赔不赚
相关试题