【题目】如图,点C是AB的中点,AD=CE,CD=BE. ![]()
(1)求证:△ACD≌△CBE;
(2)连接DE,求证:四边形CBED是平行四边形.
参考答案:
【答案】
(1)证明:∵点C是AB的中点,
∴AC=BC;在△ADC与△CEB中,
,
∴△ADC≌△CEB(SSS)
(2)证明:连接DE,如图所示:
∵△ADC≌△CEB,
∴∠ACD=∠CBE,
∴CD∥BE,
又∵CD=BE,
∴四边形CBED是平行四边形.
![]()
【解析】(1)由SSS证明证明△ADC≌△CEB即可;(2)由全等三角形的性质得出得到∠ACD=∠CBE,证出CD∥BE,即可得出结论.
【考点精析】根据题目的已知条件,利用平行四边形的判定的相关知识可以得到问题的答案,需要掌握两组对边分别平行的四边形是平行四边形:两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,⊙O的半径OD垂直于弦AB,垂足为点C,连接AO并延长交⊙O于点E,连接BE,CE.若AB=8,CD=2,则△BCE的面积为( )

A.12
B.15
C.16
D.18 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为s时,四边形EFGH的面积最小,其最小值是cm2 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中: ①∠ABC=∠ADC;
②AC与BD相互平分;
③AC,BD分别平分四边形ABCD的两组对角;
④四边形ABCD的面积S=
ACBD.
正确的是(填写所有正确结论的序号)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD为45°,在B点测得D点的仰角∠CBD为60°,求这两座建筑物的高度(结果保留根号)

-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读对学生的成长有着深远的影响,某中学为了解学生每周课余阅读的时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表.
组别
时间(小时)
频数(人数)
频率
A
0≤t≤0.5
6
0.15
B
0.5≤t≤1
a
0.3
C
1≤t≤1.5
10
0.25
D
1.5≤t≤2
8
b
E
2≤t≤2.5
4
0.1
合计
1
请根据图表中的信息,解答下列问题:

(1)表中的a= , b= , 中位数落在组,将频数分布直方图补全;
(2)估计该校2000名学生中,每周课余阅读时间不足0.5小时的学生大约有多少名?
(3)E组的4人中,有1名男生和3名女生,该校计划在E组学生中随机选出两人向全校同学作读书心得报告,请用画树状图或列表法求抽取的两名学生刚好是1名男生和1名女生的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】某周日上午8:00小宇从家出发,乘车1小时到达某活动中心参加实践活动.11:00时他在活动中心接到爸爸的电话,因急事要求他在12:00前回到家,他即刻按照来活动中心时的路线,以5千米/小时的平均速度快步返回.同时,爸爸从家沿同一路线开车接他,在距家20千米处接上了小宇,立即保持原来的车速原路返回.设小宇离家x(小时)后,到达离家y(千米)的地方,图中折线OABCD表示y与x之间的函数关系.

(1)活动中心与小宇家相距千米,小宇在活动中心活动时间为小时,他从活动中心返家时,步行用了小时;
(2)求线段BC所表示的y(千米)与x(小时)之间的函数关系式(不必写出x所表示的范围);
(3)根据上述情况(不考虑其他因素),请判断小宇是否能在12:00前回到家,并说明理由.
相关试题