【题目】如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为( )
![]()
A. 75°B. 60°C. 55°D. 45°
参考答案:
【答案】B
【解析】
由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和定理得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出结果.
解:∵四边形ABCD是正方形,
∴∠BAD=90°,AB=AD,∠BAF=45°,
∵△ADE是等边三角形,
∴∠DAE=60°,AD=AE,
∴∠BAE=90°+60°=150°,AB=AE,
∴∠ABE=∠AEB=
(180°﹣150°)=15°,
∴∠BFC=∠BAF+∠ABE=45°+15°=60°;
故选:B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某机动车出发前油箱内有油42L,行驶若干小时后,在途中加油站加油若干升.油箱中余油量Q(L)与行驶时间t(h)之间的函数关系如图所示,根据如图回答问题:

(1)机动车行驶几小时后加油?加了多少油?
(2)请求出加油前油箱余油量Q与行驶时间t之间的关系式;
(3)如果加油站离目的地还有230km,车速为40km/h,要到达目的地,油箱中的油是否够用?请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AD是
的切线,切点为A,AB是
的弦,过点B作
,交
于点C,连接AC,过点C作
,交AD于点D,连接AO并延长AO交BC于点M,交
于点E,交过点C的直线于点P,且
.
求证:
;
判断直线PC与
的位置关系,并说明理由;
若
,
,求PC的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】在正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于点Q.
(1)如图①,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系,并加以证明;
(2)如图②,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线
与y轴交于点
,与x轴交于点
,点P是线段AB上方抛物线上的一个动点.
求这条抛物线的表达式及其顶点坐标;
当点P移动到抛物线的什么位置时,使得
,求出此时点P的坐标;
当点P从A点出发沿线段AB上方的抛物线向终点B移动,在移动中,点P的横坐标以每秒1个单位长度的速度变动;与此同时点M以每秒1个单位长度的速度沿AO向终点O移动,点P,M移动到各自终点时停止
当两个动点移动t秒时,求四边形PAMB的面积S关于t的函数表达式,并求t为何值时,S有最大值,最大值是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】有理数a、b、c在数轴上的位置如图所示

(1)比较a、b、|c|的大小(用“>”连接);
(2)若n=|b+c|﹣|c﹣1|﹣|b﹣a|,求
的值; (3)若a=
,b=﹣2,c=﹣3,且a、b、c对应的点分别为A、B、C,问在数轴上是否存在一点M,使M与B的距离是M与A的距离的3倍,若存在,请求出M点对应的有理数;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】在市举办的“划龙舟,庆端午”比赛中,甲、乙两队在比赛时的路程
(米)与时间
(分钟)之间的函数关系图象如图所示,根据图象得到下列结论,你认为正确的结论是( )
①这次比赛的全程是
米;②乙队先到达终点;③比赛中两队从出发到
分钟时间段,乙队的速度比甲队的速度快;④乙与甲相遇时乙的速度是
米/分钟;⑤在
分钟时,乙队追上了甲队.A.①③④B.①②⑤C.①②④D.①②③④⑤
相关试题