【题目】如图,矩形OABC的两边在坐标轴上,点A的坐标为(10,0),抛物线y=ax2+bx+4过点B,C两点,且与x轴的一个交点为D(﹣2,0),点P是线段CB上的动点,设CP=t(0<t<10).
(1)请直接写出B、C两点的坐标及抛物线的解析式;
(2)过点P作PE⊥BC,交抛物线于点E,连接BE,当t为何值时,∠PBE=∠OCD?
(3)点Q是x轴上的动点,过点P作PM∥BQ,交CQ于点M,作PN∥CQ,交BQ于点N,当四边形PMQN为正方形时,请求出t的值.
![]()
参考答案:
【答案】(1)B(10,4),C(0,4),
;(2)3;(3)
或
.
【解析】试题分析:(1)由抛物线的解析式可求得C点坐标,由矩形的性质可求得B点坐标,由B、D的坐标,利用待定系数法可求得抛物线解析式;
(2)可设P(t,4),则可表示出E点坐标,从而可表示出PB、PE的长,由条件可证得△PBE∽△OCD,利用相似三角形的性质可得到关于t的方程,可求得t的值;
(3)当四边形PMQN为正方形时,则可证得△COQ∽△QAB,利用相似三角形的性质可求得CQ的长,在Rt△BCQ中可求得BQ、CQ,则可用t分别表示出PM和PN,可得到关于t的方程,可求得t的值.
试题解析:
解:(1)在y=ax2+bx+4中,令x=0可得y=4,
∴C(0,4),
∵四边形OABC为矩形,且A(10,0),
∴B(10,4),
把B、D坐标代入抛物线解析式可得
,
解得
,
∴抛物线解析式为y=
x2+
x+4;
(2)由题意可设P(t,4),则E(t,
t2+
t+4),
∴PB=10﹣t,PE=
t2+
t+4﹣4=
t2+
t,
∵∠BPE=∠COD=90°,
当∠PBE=∠OCD时,
则△PBE∽△OCD,
∴
,即BPOD=COPE,
∴2(10﹣t)=4(
t2+
t),解得t=3或t=10(不合题意,舍去),
∴当t=3时,∠PBE=∠OCD;
当∠PBE=∠CDO时,
则△PBE/span>∽△ODC,
∴
,即BPOC=DOPE,
∴4(10﹣t)=2(
t2+
t),解得t=12或t=10(均不合题意,舍去)
综上所述∴当t=3时,∠PBE=∠OCD;
(3)当四边形PMQN为正方形时,则∠PMC=∠PNB=∠CQB=90°,PM=PN,
∴∠CQO+∠AQB=90°,
∵∠CQO+∠OCQ=90°,
∴∠OCQ=∠AQB,
∴Rt△COQ∽Rt△QAB,
∴
,即OQAQ=COAB,
设OQ=m,则AQ=10﹣m,
∴m(10﹣m)=4×4,解得m=2或m=8,
①当m=2时,CQ=
=
,BQ=
=
,
∴sin∠BCQ=
=
,sin∠CBQ=
=
,
∴PM=PCsin∠PCQ=
t,PN=PBsin∠CBQ=
(10﹣t),
∴
t =
(10﹣t),解得t=
,
②当m=8时,同理可求得t=
,
∴当四边形PMQN为正方形时,t的值为
或
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某集团公司对所属甲、乙两分厂下半年经营情况记录(其中“+”表示盈利,“-”表示亏损,单位:亿元)如下表.

(1)计算八月份乙厂比甲厂多亏损多少亿元?
(2)分别计算下半年甲、乙两个工厂平均每月盈利或亏损多少亿元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】我们规定,若关于
的一元一次方程
的解为
,则称该方程为“奇异方程”.例如:
的解为
,则该方程
是“奇异方程”.请根据上述规定解答下列问题:(Ⅰ)判断方程
________(回答“是”或“不是”)“奇异方程”;(Ⅱ)若
,有符合要求的“奇异方程”吗?若有,求
的值;若没有,请说明理由.(Ⅲ)若关于
的一元一次方程
和
都是“奇异方程”,求代数式
+
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平面直角坐标系中的每个小正方形边长为1,△ABC的顶点在网格的格点上.
(1)画线段AD∥BC,且使AD=BC,连接BD;此时D点的坐标是 .
(2)直接写出线段AC的长为 ,AD的长为 ,BD的长为 .
(3)直接写出△ABD为 三角形,四边形ADBC面积是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】正方形ABCD的轨道上有两个点甲与乙,开始时甲在A处,乙在C处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1cm,乙的速度为每秒5cm,已知正方形轨道ABCD的边长为2cm,则乙在第2019次追上甲时的位置在( )

A.AB上B.BC上C.CD上D.AD上
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,面积为28的平行四边形纸片ABCD中,AB=7,∠BAD=45°,按下列步骤进行裁剪和拼图.

第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE纸片;
第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;
第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN和△BCG在BC同侧).
则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,数轴上的点A,B,C,D,E表示连续的五个整数,对应的数分别为a,b,c,d,e.
(1)若a=-3,则e = ;
(2)若a+e=0,则代数式b+c+d= ;
(3)若d是最大的负整数,求代数式
的值(写出求解过程).(4)若e=4,F也为数轴上一点,且BE=2FE,则F表示的数为 ;

相关试题