【题目】如图,A.B是双曲线y=
上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为 . ![]()
参考答案:
【答案】![]()
【解析】解:过点B作BE⊥x轴于点E, ∵D为OB的中点,
∴CD是△OBE的中位线,即CD=
BE.
设A(x,
),则B(2x,
),CD=
,AD=
﹣
,
∵△ADO的面积为1,
∴
ADOC=1,
(
﹣
)x=1,解得k=
,
故答案是:
.
过点B作BE⊥x轴于点E,根据D为OB的中点可知CD是△OBE的中位线,即CD=
BE,设A(x,
),则B(2x,
),故CD=
,AD=
﹣
,再由△ADO的面积为1求出y的值即可得出结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知正方形ABCD,点M边AB的中点.
(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG、BG分别与边BC、CD交于点E、F.
①求证:BE=CF;
②求证:BE2=BCCE.
(2)如图2,在边BC上取一点E,满足BE2=BCCE,连接AE交CM于点G,连接BG并延长CD于点F,求tan∠CBF的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在等边△ABC中,点E、D分别是AC,BC边的中点,点P为AB边上的一个动点,连接PE,PD,PC,DE.设AP=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的( )

A.线段DE
B.线段PD
C.线段PC
D.线段PE -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=
与y轴交于点A,与直线y=﹣
交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线y=(x﹣h)2+k的顶点在直线y=﹣
上移动.若抛物线与菱形的边AB、BC都有公共点,则h的取值范围是( )
A.﹣2
B.﹣2≤h≤1
C.﹣1
D.﹣1
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为C′,再将所折得的图形沿EF折叠,使得点D和点A重合.若AB=3,BC=4,则折痕EF的长为

-
科目: 来源: 题型:
查看答案和解析>>【题目】解答题
(1)先化简,再求值:(x+1)2+x(2﹣x),其中x=
(2)解不等式组
,并把解集表示在数轴上. -
科目: 来源: 题型:
查看答案和解析>>【题目】商店只有雪碧、可乐、果汁、奶汁四种饮料,某同学去该店购买饮料,每种饮料被选中的可能性相同.
(1)若他去买一瓶饮料,则他买到奶汁的概率是多少?
(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.
相关试题