【题目】如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为C′,再将所折得的图形沿EF折叠,使得点D和点A重合.若AB=3,BC=4,则折痕EF的长为 ![]()
参考答案:
【答案】![]()
【解析】解: ![]()
设BC′与AD交于N,EF与AD交于M,
根据折叠的性质可得:∠NBD=∠CBD,AM=DM=
AD,∠FMD=∠EMD=90°,
∵四边形ABCD是矩形,
∴AD∥BC,AD=BC=4,∠BAD=90°,
∴∠ADB=∠CBD,
∴∠NBD=∠ADB,
∴BN=DN,
设AN=x,则BN=DN=4﹣x,
∵在Rt△ABN中,AB2+AN2=BN2 ,
∴32+x2=(4﹣x)2 ,
∴x=
,
即AN=
,
∵C′D=CD=AB=3,∠BAD=∠C′=90°,∠ANB=∠C′ND,
∴△ANB≌△C′ND(AAS),
∴∠FDM=∠ABN,
∴tan∠FDM=tan∠ABN,
∴
,
∴
,
∴MF=
,
由折叠的性质可得:EF⊥AD,
∴EF∥AB,
∵AM=DM,
∴ME=
AB=
,
∴EF=ME+MF=
+
=
.
所以答案是:
.
【考点精析】解答此题的关键在于理解矩形的性质的相关知识,掌握矩形的四个角都是直角,矩形的对角线相等,以及对翻折变换(折叠问题)的理解,了解折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在等边△ABC中,点E、D分别是AC,BC边的中点,点P为AB边上的一个动点,连接PE,PD,PC,DE.设AP=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的( )

A.线段DE
B.线段PD
C.线段PC
D.线段PE -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=
与y轴交于点A,与直线y=﹣
交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线y=(x﹣h)2+k的顶点在直线y=﹣
上移动.若抛物线与菱形的边AB、BC都有公共点,则h的取值范围是( )
A.﹣2
B.﹣2≤h≤1
C.﹣1
D.﹣1
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,A.B是双曲线y=
上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】解答题
(1)先化简,再求值:(x+1)2+x(2﹣x),其中x=
(2)解不等式组
,并把解集表示在数轴上. -
科目: 来源: 题型:
查看答案和解析>>【题目】商店只有雪碧、可乐、果汁、奶汁四种饮料,某同学去该店购买饮料,每种饮料被选中的可能性相同.
(1)若他去买一瓶饮料,则他买到奶汁的概率是多少?
(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,已知双曲线y=
(k>0)与直线y=k′x交于A、B两点,点A在第一象限,试回答下列问题:
(1)若点A的坐标为(3,1),则点B的坐标为;当x满足:时,
≤k′x;
(2)如图2,过原点O作另一条直线l,交双曲线y=
(k>0)于P,Q两点,点P在第一象限.
四边形APBQ一定是;
(3)若点A的坐标为(3,1),点P的横坐标为1,求四边形APBQ的面积.
(4)设点A,P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出m,n应满足的条件;若不可能,请说明理由.
相关试题