【题目】如图,已知A、B两点的坐标分别为(-4,0)、(0,2),⊙C的圆心坐标为(0,-2),半径为2.若D是⊙C上的一个动点,射线AD与
轴交于点E,则△ABE面积的最大值是 . ![]()
参考答案:
【答案】![]()
【解析】当射线AD与⊙C相切时,△ABE面积的最大.
如图,连接AC.
![]()
∵A点的坐标为(-4,0),⊙C的圆心坐标为(0,-2),半径为2.
∴AO=4,OC=2,即OC为⊙C的半径,则AO与⊙C相切.
∵AO、AD是⊙C的两条切线,
∴AD=AO=4.
连接CD,设EF=x,
∴DE2=EFOE,
∵CF=2,
∴DE=
.
易证△CDE∽△AOE,则
,即
,
解得x=
或x=0(不合题意,舍去),
∴BE=BO+OF+EF=2+4+
= ![]()
故△ABE面积的最大值为:
=
.
【考点精析】本题主要考查了相似三角形的判定与性质的相关知识点,需要掌握相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于
的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:
①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn,你认为其中正确的有( )

A. ①② B. ③④ C. ①②③ D. ①②③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人感觉十分惊奇,请华罗庚给大家解读其中的奥秘.
你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试:
①
,又
,
,∴能确定59319的立方根是个两位数.②∵59319的个位数是9,又
,∴能确定59319的立方根的个位数是9.③如果划去59319后面的三位319得到数59,
而
,则
,可得
,由此能确定59319的立方根的十位数是3
因此59319的立方根是39.
(1)现在换一个数195112,按这种方法求立方根,请完成下列填空.
①它的立方根是_______位数.
②它的立方根的个位数是_______.
③它的立方根的十位数是__________.
④195112的立方根是________.
(2)请直接填写结果:
①
________.②
________. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线
与
轴的一个交点A在点(-2,0)和(1,0)之间(包括这两点),顶点C是矩形DEFG上(包括边界和内部)的一个动点,则
的取值范围是 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A、B、C是⊙O上的三点,AB∥OC.

(1)求证:AC平分∠OAB;
(2)过点O作OE⊥AB于点E,交AC于点P.若AB=2,∠AOE=30°,求PE的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
(1)
﹣
+|
﹣3|(2)x2x4﹣(﹣3x2)3
(3)(m+1)(m﹣3)﹣(m+2)2+(m+2)(m﹣2)
(4)20142﹣2013×2015(用公式计算)
相关试题