【题目】如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.
求证:(1)△ADE≌△BEC
(2)△CDE是直角三角形.
![]()
参考答案:
【答案】(1)证明见解析(2)证明见解析
【解析】
(1)根据∠1=∠2,得DE=CE,利用“HL”可证明Rt△ADE≌Rt△BEC;
(2)是直角三角形,由Rt△ADE≌Rt△BEC得,∠3=∠4,从而得出∠4+∠5=90°,则△CDE是直角三角形.
(1)∵∠1=∠2,
∴DE=CE,
∵∠A=∠B=90°,
在Rt△ADE和Rt△BEC中,
![]()
∴Rt△ADE≌Rt△BEC(HL);
![]()
(2)∵Rt△ADE≌Rt△BEC,
∴∠3=∠4,
∵∠3+∠5=90°,
∴∠4+∠5=90°,
∴∠DEC=90°,
∴△CDE是直角三角形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在△ABC中,AB=AC=2,∠A=90°,将一块与△ABC全等的三角板的直角顶点放在点C上,一直角边与BC重叠.

(1)操作1:固定△ABC,将三角板沿C→B方向平移,使其直角顶点落在BC的中点M,如图2所示,探究:三角板沿C→B方向平移的距离为;
(2)操作2:在(1)的情况下,将三角板BC的中点M顺时针方向旋转角度a(0°<a<90°),如图3所示,探究:设三角形板两直角边分别与AB、AC交于点P、Q,观察四边形MPAQ形状的变化,问:四边形MPAQ的面积S是否改变,若不变,求其面积;若改变,试说明理由;
(3)在(2)的情形下,连PQ,则当△MPQ的面积等于四边形MPAQ的面积的一半时,四边形MPAQ的形状为 , 此时BP= . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=﹣
x2+bx+c与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).
(1)求抛物线的解析式
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,请直接写出P点的坐标;如果不存在,请说明理由.
(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,△CBF的面积最大?请求出△CBF的最大面积及此时E点的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】为了提高学生书写汉字的能力.增强保护汉字的意识,我区举办了“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
组别
成绩x分
频数(人数)
第1组
25≤x<30
4
第2组
30≤x<35
6
第3组
35≤x<40
14
第4组
40≤x<45
a
第5组
45≤x<50
10
请结合图表完成下列各题:
(1)求表中a的值;
(2)请把频数分布直方图补充完整;
(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】某江段江水流经B,C,D三点拐弯后与原来流向相同,如图,若∠ABC=120°,∠BCD=80°,则∠EDC=___________°.

-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下列解答过程:(1)如图甲,AB∥CD,探索∠P与∠A,∠C之间的关系.
(2)如图乙和图丙,AB∥CD,请根据上述方法分别探索两图中∠P与∠A,∠C之间的关系.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:二次函数y=ax2+bx+c的图象所示,下列结论中:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2 , 且x1≠x2 , 则x1+x2=2,正确的个数为( )

A.1个
B.2个
C.3个
D.4个
相关试题