【题目】已知二次函数y=x2﹣2x﹣1.
(1)求此二次函数的图象与x轴的交点坐标;
(2)将y=x2的图象经过怎样的平移,就可以得到二次函数y=x2﹣2x﹣1的图象.
参考答案:
【答案】解:(1)二次函数的解析式y=x2﹣2x﹣1,
令y=0,得到x2﹣2x﹣1=0,
移项得:x2﹣2x=1,
两边加上1得:x2﹣2x+1=2,即(x﹣1)2=2,
可得x﹣1=
或x﹣1=﹣
,
解得:x1=
+1,x2=﹣
+1,
则此二次函数的图象与x轴的交点坐标分别为(
+1,0)、(﹣
+1,0);
(2)将二次函数y=x2﹣2x﹣1化为顶点式为y=(x﹣1)2﹣2,
∴将y=x2的图象先向右平移1个单位,再向下平移2个单位,可得到二次函数y=x2﹣2x﹣1的图象.
【解析】(1)令二次函数解析式中y=0,得到关于x的一元二次方程,求出方程的解可得出二次函数与x轴的交点坐标;
(2)将二次函数y=x2﹣2x﹣1化为顶点形式,然后比较y=x2与y=(x﹣1)2﹣2,根据图象的平移规律“上加下减、左加右减”,可得出平移的过程.
【考点精析】解答此题的关键在于理解二次函数图象的平移的相关知识,掌握平移步骤:(1)配方 y=a(x-h)2+k,确定顶点(h,k)(2)对x轴左加右减;对y轴上加下减,以及对抛物线与坐标轴的交点的理解,了解一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在数轴上,点A向右移动1个单位得到点B,点B向右移动(n+1)(n为正整数)个单位得到点C,点A,B,C分别表示有理数a,b,c,
(1)当n=1时,
①点A,B,C三点在数轴上的位置如图所示,a,b,c三个数的乘积为正数,数轴上原点的位置可
A.在点A左侧或在A,B两点之间 B.在点C右侧或在A,B两点之间
C.在点A左侧或在B,C两点之间 D.在点C右侧或在B,C两点之间
②若这三个数的和与其中的一个数相等,求a的值;
(2)将点C向右移动(n+2)个单位得到点D,点D表示有理数d,a、b、c、d四个数的积为正数,这四个数的和与其中的两个数的和相等,且a为整数,请在数轴上标出点D并用含n的代数式表示a.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合.展开后,折痕DE分别交AB、AC于点E、G.连接GF.下列结论:①∠AGD=112.5°;②AD:AE=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2 OG。其中正确结论的序号是______.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD中,
,点E是BC边上一点,连接AE,把
沿AE折叠,使点B落在点
处
当
为直角三角形时,
的长为______ .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,所示的正方形网格中,△ABC的顶点均在格点上,在所给平面直角坐标系中解答下列问题:
(1)画出△ABC关于x轴对称的△A1B1C1;
(2)作出将△ABC绕原点O按逆时针方向旋转90°后所得的△A2B2C2;
(3)写出点A1、A2的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】点A1、A2、A3、…、An(n为正整数)都在数轴上.点A2在点A1的左边,且A1A2=1;点A3在点A2的右边,且A2A3=2;点A4在点A3的左边,且A3A4=3;…,点A2018在点A2017的左边,且A2017A2018=2017,若点A2018所表示的数为2018,则点A1所表示的数为_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.
(1)图中A→C( , ),B→C( , ),C→ (+1,﹣2);
(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;
(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.
(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?

相关试题