【题目】如图,已知 AB 是⊙O 的直径,点 C、D 在⊙O 上,过 D 点作 PF∥AC交⊙O 于 F,交 AB 于点 E,∠BPF=∠ADC
(1)求证:AEEB=DEEF.
(2)求证:BP 是⊙O 的切线:
(3)当的半径为
,AC=2,BE=1 时,求 BP 的长,
![]()
参考答案:
【答案】(1)证明见解析.(2)证明见解析.(3)2.
【解析】
试题(1)根据圆周角定理得出∠ACB=90°,∠CAB+∠ABC=90°,进而得出∠PEB+∠BPF=90°,从而证得PB是O的切线;
(2)证得△AEF∽△DEB,从而得出
,即可证得AEEB=DEEF;
(3)先根据勾股定理求得BC的长,进而根据△ABC∽△EPB,对应边成比例即可求得BP的长.
试题解析:(1)证明:连结BC,
∵AB是O的直径,
∴∠ACB=90°,
∴∠CAB+∠ABC=90°,
又∵∠ABC=∠ADC,∠ADC=∠BPF,
∵PF∥AC,
∴∠CAB=∠PEB,
∴∠PEB+∠BPF=90°,
∴PB⊥AB,
∴PB是O的切线;
(2)连结AF、BD.
![]()
在△AEF和△DEB中,
∠AEF=∠DEB.∠AFE=∠DBE,
∴△AEF∽△DEB,
∴
,即AEEB=DEEF;
(3)在Rt△ABC中,BC2=(2
)2-22
∴BC=4,
在Rt△ABC和Rt△EPB中,
∠ABC=∠ADC=∠BPF,
∴△ABC∽△EPB,
∴
,
∴BP=
=2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于
的一元二次方程
.(1)试证明:无论
取何值此方程总有两个实数根;(2)若原方程的两根
,
满足
,求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.

(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;
(3)若抛物线上有一动点P,使三角形ABP的面积为6,求P点坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】进入冬季,我市空气质量下降,多次出现雾霾天气.商场根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包.若供货厂家规定市场价不得低于30元/包,且商场每周完成不少于150包的销售任务.
(1)试确定周销售量y(包)与售价x(元/包)之间的函数关系式;
(2)试确定商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式,并直接写出售价x的范围;
(3)当售价x(元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w(元)最大?最大利润是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1 .

(1)线段OA1的长是 , ∠AOB1的度数是;
(2)连接AA1 , 求证:四边形OAA1B1是平行四边形;
(3)求点B旋转到点B1的位置所经过的路线的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.
(1)用含x的代数式表示线段CF的长;
(2)如果把△CAE的周长记作C△CAE,△BAF的周长记作C△BAF,设
=y,求y关于x的函数关系式,并写出它的定义域;(3)当∠ABE的正切值是
时,求AB的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,在平面直角坐标系中,抛物线y=x2﹣2mx+m2+
m的顶点为A,与y轴交于点B.当抛物线不经过坐标原点时,分别作点A、B关于原点的对称点C、D,连结AB、BC、CD、DA.(1)分别用含有m的代数式表示点A、B的坐标.
(2)判断点B能否落在y轴负半轴上,并说明理由.
(3)连结AC,设l=AC+BD,求l与m之间的函数关系式.
(4)过点A作y轴的垂线,交y轴于点P,以AP为边作正方形APMN,MN在AP上方,如图②,当正方形APMN与四边形ABCD重叠部分图形为四边形时,直接写出m的取值范围.

相关试题