【题目】在小学,我们已经初步了解到,正方形的每个角都是90°,每条边都相等.如图,在正方形ABCD外侧作直线AQ,且∠QAD=30°,点D关于直线AQ的对称点为E,连接DE、BE,DE交AQ于点G,BE交AQ于点F.
![]()
(1)求∠ABE的度数;
(2)若AB=6,求FG的长.
参考答案:
【答案】(1)15°;(2)3
【解析】
试题分析:(1)连接AE,由轴对称的性质和线段垂直平分线的性质得出∠EAQ=∠QAD=30°,由正方形的性质得出∠BAD=90°,AB=AD,得出AE=AB,由等腰三角形的性质和三角形内角和定理即可得出结果;
(2)证出△AED是等边三角形,得出ED=6,由线段垂直平分线得出EG=3,∠FGE=90°,证出∠EFG=∠FEG=45°,得出EG=FG=3即可.
解:(1)连接AE,如图1所示:
![]()
∵点D关于直线AQ的对称点为E,
∴AE=AD,AQ垂直平分DE,
∴∠EAQ=∠QAD=30°,
∵四边形ABCD是正方形,
∴∠BAD=90°,AB=AD,
∴AE=AB,
∴∠BAE=30°+30°+90°=150°,
∴∠ABE=
(180°﹣150°)=15°;
(2)由(1)得:AE=AD,∠EAD=60°,
∴△AED是等边三角形,ED=6,
∵AQ垂直平分DE,
∴EG=3,∠FGE=90°,
∵∠EAD=30°,∠AEB=15°,
∴∠EFG=∠FEG=45°,
∴EG=FG=3.
-
科目: 来源: 题型:
查看答案和解析>>【题目】观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式中的规律,你认为220的末位数字是( )
A.2 B.4 C.6 D.8
-
科目: 来源: 题型:
查看答案和解析>>【题目】使两个直角三角形全等的条件是( )
A. 一个锐角对应相等 B. 两个锐角对应相等
C. 一条边对应相等 D. 斜边及一条直角边对应相等
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.

(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为2,求图中阴影部分的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,菱形ABCD中,AB=2,∠B=60°,M为AB的中点.动点P在菱形的边上从点B出发,沿B→C→D的方向运动,到达点D时停止.连接MP,设点P运动的路程为x,MP 2=y,则表示y与x的函数关系的图象大致为( )

A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小明在对代数式2x2+ax﹣y+6﹣(bx2+3x﹣5y+1)化简后,没有含x的项,请求出代数式(a﹣b)2的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】先化简,再求值:(3a2﹣2a﹣6)﹣2(2a2﹣2a﹣5),其中a=﹣1.
相关试题