【题目】如图,边长分别为
和
的两个正方形
和
并排放在一起,连结
并延长交
于点
,交
于点
,则
![]()
![]()
A.
B. 2
C. 2 D. 1
参考答案:
【答案】B
【解析】
根据正方形的对角线平分一组对角可得∠ADB=∠CGE=45°,再求出∠GDT=45°,从而得到△DGT是等腰直角三角形,根据正方形的边长求出DG,再根据等腰直角三角形的直角边等于斜边的
倍求解即可.
∵BD、GE分别是正方形ABCD,正方形CEFG的对角线,
∴∠ADB=∠CGE=45°,
∴∠GDT=180°-90°-45°=45°,
∴∠DTG=180°-∠GDT-∠CGE=180°-45°-45°=90°,
∴△DGT是等腰直角三角形,
∵两正方形的边长分别为4,8,
∴DG=8-4=4,
∴GT=
×4=2
.
故选B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)问题发现:如图1,如果△ACB和△CDE均为等边三角形,点A、D、E在同一直线上,连接BE.则AD与BE的数量关系为 ;∠AEB的度数为 度.
(2)拓展探究:如图2,如果△ACB和△CDE均为等腰三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,连接BE,判断线段AE与BE的位置关系,并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将长方形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为( )

A. 62°B. 56°C. 31°D. 28°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF.
(1)求证:AE=CF;
(2)若AB=6,∠COD=60°,求矩形ABCD的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】“
年冬季越野赛”在滨河学校操场举行,某运动员从起点学校东门出发,途径湿地公园,沿比赛路线跑回终点学校东门.沿该运动员离开起点的路程
(千米)与跑步时间
(时间)之间的函数关系如图所示,其中从起点到湿地公园的平均速度是
千米/分钟,用时
分钟,根据图像提供的信息,解答下列问题:(
)求图中
的值;(
)组委会在距离起点
千米处设立一个拍摄点
,该运动员从第一次过点
到第二次过点
所用的时间为
分钟.①求
所在直线的函数解析式;②该运动员跑完全程用时多少分钟?

-
科目: 来源: 题型:
查看答案和解析>>【题目】为了参加“醴陵市中小学生首届诗词大会”,某中学八年级的两班学生进行了预选,其中班上前5名学生的成绩(百分制)分别为:八(1)班86,85,77 ,92, 85;八(2)班79 ,85 ,92,85 ,89.通过数据分析,列表如下:
班级
平均分
中位数
众数
方差
八(1)
85
b
c
d
八(2)
a
85
85
e
(1)直接写出表中a,b,c的值:a= ,b= ,c= .
(2)求d,e的值,并根据以上数据分析,你认为哪个班前5名同学的成绩较好?说明理由.
(3)若“醴陵市中小学生首届诗词大会”中,各中学代表队成绩计分分两部分:现场评委记分和网络评委投票记分。且现场评委记分权数为80%,网络评委投票记分权数为20%,请计算A,B,C三所中学代表队的最终得分为多少?
中学A
中学B
中学C
评委记分
90
80
85
网络投票记分
85
92
88
-
科目: 来源: 题型:
查看答案和解析>>【题目】填空并完成以下证明:
已知:点P在直线CD上,∠BAP+∠APD=180°,∠1=∠2.
求证:AB∥CD,∠E=∠F.
证明:∵∠BAP+∠APD=180°,(已知)
∴AB∥ .( )
∴∠BAP= .( )
又∵∠1=∠2,(已知)
∠3= ﹣∠1,
∠4= ﹣∠2,
∴∠3= (等式的性质)
∴AE∥PF.( )
∴∠E=∠F.( )

相关试题