【题目】如图1,A、B两点在数轴上对应的数分别为﹣12和4.
(1)直接写出A、B两点之间的距离;
(2)若在数轴上存在一点P,使得AP=
PB,求点P表示的数.
![]()
(3)如图2,现有动点P、Q,若点P从点A出发,以每秒5个单位长度的速度沿数轴向右运动,同时点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,当点Q到达原点O后立即以每秒3个单位长度的速度沿数轴向右运动,求:当OP=4OQ时的运动时间t的值.
![]()
参考答案:
【答案】(1)A、B两点之间的距离是16;(2)点P表示的数为﹣8或﹣20;(3)当OP=4OQ时的运动时间t的值为
或
秒.
【解析】
(1)根据两点间的距离公式即可求出A、B两点之间的距离;
(2)设点P表示的数为x.分两种情况:①点P在线段AB上;②点P在线段BA的延长线上.根据AP=
PB列出关于x的方程,求解即可;
(3)根据点Q的运动方向分两种情况:①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动;②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,根据OP=4OQ列出关于t的方程,解方程即可.
(1)A、B两点之间的距离是:4﹣(﹣12)=16.
(2)设点P表示的数为x.分两种情况:
①当点P在线段AB上时,
∵AP=
PB,
∴x+12=
(4﹣x),
解得x=﹣8;
②当点P在线段BA的延长线上时,
∵AP=
PB,
∴﹣12﹣x=
(4﹣x),
解得x=﹣20.
综上所述,点P表示的数为﹣8或﹣20;
(3)分两种情况:
①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,
此时Q点表示的数为4﹣2t,P点表示的数为﹣12+5t,
∵OP=4OQ,
∴12﹣5t=4(4﹣2t),
解得t=
,符合题意;
②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,
此时Q点表示的数为3(t﹣2),P点表示的数为﹣12+5t,
∵OP=4OQ,
∴|12﹣5t|=4×3(t﹣2),
∴12﹣5t=12t﹣24,或5t﹣12=12t﹣24,
解得t=
,符合题意;或t=
,不符合题意舍去.
综上所述,当OP=4OQ时的运动时间t的值为
或
秒.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=AC,以AB为直径的⊙O分别交边BC、AC于点D、点E,且AE=BE.
(1)如图①,求∠EBC的度数;
(2)如图②,过点D作⊙O的切线交AB的延长线于点G,交AC于点F,若⊙O的直径为10,求BG的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知:∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】为了响应市委和市政府“绿色环保,节能减排”的号召,幸福商场用3300元购进甲、乙两种节能灯共计100只,很快售完.这两种节能灯的进价、售价如下表:
进价(元/只)
售价(元/只)
甲种节能灯
30
40
甲种节能灯
35
50
(1)求幸福商场甲、乙两种节能灯各购进了多少只?
(2)全部售完100只节能灯后,商场共计获利多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,⊙O中,BD为⊙O直径,弦AD长为3,AB长为5,AC平分∠DAB,则弦AC的长为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为( )

A. BE=DF B. BF=DE C. AE=CF D. ∠1=∠2
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,∠BAD的平分线AE交DC于点E.
(1)求证:AD=DE;
(2)若AB∶CB=3∶2,CE=5 cm,求ABCD的周长.

相关试题