【题目】已知:如图,点C在AOB的一边OA上,过点C的直线DE//OB,CF平分ACD,CG CF于C .
(1)若O =40,求ECF的度数;
(2)求证:CG平分OCD;
(3)当O为多少度时,CD平分OCF,并说明理由.
![]()
参考答案:
【答案】(1)ECF=
;
(2)证明见解析;
(3)结论:当O=60时 ,CD平分OCF,理由见解析.
【解析】试题分析:由两直线平行,同位角相等得∠ACE =40,由平角定义得∠ACD=
,再由角平分线定义得
,由邻补角定义得到ECF=
;(2)由垂直的定义得
,由
得
,由等角的余角相等可证;(3)由两直线平行,同位角相等得∠DCO=∠O=60,由角平分线性质得∠DCF=60,由等量代换得
即可得证.
试题解析:(1)∵DE//OB ,
∴∠O=∠ACE,(两直线平行,同位角相等)
∵O =40,
∴∠ACE =40,
∵∠ACD+∠ACE=
(平角定义)
∴ ∠ACD=![]()
又 ∵CF平分ACD ,
∴
(角平分线定义)
∴ ECF=
(2)证明:∵CG CF,
∴
.
∴
又 ∵
)
∴![]()
∵![]()
∴
(等角的余角相等)
即CG平分OCD .
(3)结论:当O=60时 ,CD平分OCF .
当O=60时
∵DE//OB,
∴ ∠DCO=∠O=60.
∴ ∠ACD=120.
又 ∵CF平分ACD
∴ ∠DCF=60,
∴![]()
即CD平分OCF .
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法正确的是( )
A.直径是弦,弦是直径
B.圆有无数条对称轴
C.无论过圆内哪一点,都只能作一条直径
D.度数相等的弧是等弧
-
科目: 来源: 题型:
查看答案和解析>>【题目】某运输公司用10辆相同的汽车将一批苹果运到外地,每辆汽车能装8吨甲种苹果,或10吨乙种苹果,或11吨丙种苹果.公司规定每辆车只能装同一种苹果,而且必须满载.已知公司运送了甲、乙、丙三种苹果共100吨,且每种苹果不少于一车.
(1)设用x辆车装甲种苹果,y辆车装乙种苹果,求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)若运送三种苹果所获利润的情况如下表所示:

设此次运输的利润为W(万元),问:如何安排车辆分配方案才能使运输利润W最大,并求出最大利润.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=500,∠C=600,求∠DAE和∠BOA的度数。

-
科目: 来源: 题型:
查看答案和解析>>【题目】数轴上一点P表示的数是6,先把这个点向右移动3个单位长度,再向左移动5个单位长度,则点P表示的数是_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】数据-2,-1,0,1,2的平均数是( )
A. -2 B. -1 C. 0 D. 6
-
科目: 来源: 题型:
查看答案和解析>>【题目】某市七天的空气质量指数分别是28,45,28,45,28,30,53,这组数据的众数是( )
A. 28 B. 30 C. 45 D. 53
相关试题