【题目】如图,△ABC中,∠ACB=90°,∠A=30°,CD为△ABC的中线,作CO⊥AB于O,点E在CO延长线上,DE=AD,连接BE、DE.
![]()
(1)求证:四边形BCDE为菱形;
(2)把△ABC分割成三个全等的三角形,需要两条分割线段,若AC=6,求两条分割线段长度的和.
参考答案:
【答案】(1)求证见解析.(2)6;
【解析】
试题分析:(1)容易证三角形BCD为等边三角形,又DE=AD=BD,再证三角形DBE为等边三角形四边相等的四边形BCDE为菱形.
(2)画出图形,证出BM+MN=AM+MC=AC=6即可.
试题解析:(1)∵∠ACB=90°,∠A=30°,CD为△ABC的中线,
∴BC=
AB,CD==
AB=AD,
∴∠ACD=∠A=30°,
∴∠BDC=30°+30°=60°,
∴△BCD是等边三角形,
∵CO⊥AB,
∴OD=OB,
∴DE=BE,
∵DE=AD,
∴CD=BC=DE=BE,
∴四边形BCDE为菱形;
(2)解:作∠ABC的平分线交AC于N,再作MN⊥AB于N,如图所示:
则MN=MC==
BM,∠ABM=∠A=30°,
∴AM=BM,
∵AC=6,
∴BM+MN=AM+MC=AC=6;
即两条分割线段长度的和为6.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商厦进货员预测一种应季衬衫能畅销市场,就用0.8万元购进这种衬衫,面市后果然供不应求.于是,商厦又用1.76万元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了4元,商厦销售这种衬衫时每件预定售价都是58元.
(1)求这种衬衫原进价为每件多少元?
(2)经过一段时间销售,根据市场饱和情况,商厦经理决定对剩余的100件衬衫进行打折销售,以提高回款速度,要使这两批衬衫的总利润不少于6300元,最多可以打几折?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC是等边三角形,D为边AC的中点,AE⊥EC,BD=EC.

(1)求证:△BDA≌△CEA;
(2)请判断△ADE是什么三角形,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】分解因式:2a2﹣8的结果为_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】a是不为1的有理数,我们把
称为a的差倒数.如:2的差倒数是
=﹣1,﹣1的差倒数是
=
.已知a1=
,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,则a2016= . -
科目: 来源: 题型:
查看答案和解析>>【题目】若3a2bn﹣5amb4所得的差是单项式,则这个单项式是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点0是等边△ABC内一点,∠AOB=110°,∠BOC=α,OC=CD,
且∠DOC=60°连接OD.
(1)求证:△COD是等边三角形
(2)当α=150°时,试判断△AOD的形状,并说明理由
(3)探究:当α为多少度时,△AOD是等腰三角形

相关试题