【题目】如图,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒:
(1)PC=______cm.(用t的代数式表示)
(2)当t为何值时,△ABP≌△DCP?
(3)当点P从点B开始运动,同时,点Q从点C出发,以v cm/秒的速度沿CD向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.
![]()
参考答案:
【答案】(1) 10-2t;(2) 当t=2.5时,△ABP≌△DCP,(3)存在,2.4或2时
【解析】(1)根据P点的运动速度可得BP的长,再利用BC-BP即可得到CP的长;
(2)当t=2.5时,△ABP≌△DCP,根据三角形全等的条件可得当BP=CP时,再加上AB=DC,∠B=∠C可证明△ABP≌△DCP;
(3)此题主要分两种情况①当BP=CQ,AB=PC时,△ABP≌△PCQ;当BA=CQ,PB=PC时,△ABP≌△QCP,然后分别计算出t的值,进而得到v的值.
试题解析:(1)点P从点B出发,以2cm/秒的速度沿BC向点C运动,点P的运动时间为t秒时,BP=2t,
则PC=10-2t;
(2)当t=2.5时,△ABP≌△DCP,
∵当t=2.5时,BP=2.5×2=5,
∴PC=10-5=5,
∵在△ABP和△DCP中,
,
∴△ABP≌△DCP(SAS);
(2)①当BP=CQ,AB=PC时,△ABP≌△PCQ,
∵AB=6,
∴PC=6,
∴BP=10-6=4,
2t=4,
解得:t=2,
CQ=BP=4,
v×2=4,
解得:v=2;
②当BA=CQ,PB=PC时,△ABP≌△QCP,
∵PB=PC,
∴BP=PC=
BC=5,
2t=5,
解得:t=2.5,
CQ=BP=6,
v×2.5=6,
解得:v=2.4.
综上所述:当v=2.4或2时△ABP与△PQC全等.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】三角形的三个内角比为1∶2∶3,最小的边长为1,则最大的边长为
A. 2 B. 4 C. 6 D. 8
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知a、b互为相反数,c、d互为倒数,m是绝对值等于3的负数,则m2+(cd+a+b)m+(cd)2017的值为( )
A. ﹣8 B. 0 C. 4 D. 7
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列各式中,正确的是( )
A. x2y-2x2y=-x2y B. 2a+3b=5ab C. 7ab-3ab=4 D. a3+a2=a5
-
科目: 来源: 题型:
查看答案和解析>>【题目】|﹣32|的值是( )
A.﹣3 B.3 C.9 D.﹣9
-
科目: 来源: 题型:
查看答案和解析>>【题目】观察下列算式:
21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式中的规律,你认为220的末位数字是( )
A. 2 B. 4 C. 6 D. 8
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的一元二次方程m(x-1)2=-3x2+x的二次项系数与一次项系数互为相反数,则m的值为多少?
相关试题