【题目】将6张小长方形纸片(如图1所示)按图2所示的方式不重叠的放在长方形ABCD内,未被覆盖的部分恰好分割为两个长方形,面积分别为S1和S2.已知小长方形纸片的长为a,宽为b,且a>b.当AB长度不变而BC变长时,将6张小长方形纸片还按照同样的方式放在新的长方形ABCD内,S1与S2的差总保持不变,则a,b满足的关系是
![]()
A.
B. ![]()
C.
D. ![]()
参考答案:
【答案】D
【解析】
表示出左上角与右下角部分的面积,求出它们的差,根据它们的差与BC无关即可求出a与b的关系式.
设S1的长为x,则宽为4b,S2的长为y,则宽为a,
则AB=4b+a,BC=y+2b,
∵x+a=y+2b,
∴y-x=a-2b,
S1与S2的差=ay-4bx=ay-4b(y-a+2b)=(a-4b)y+4ab-8b2,
∴a-4b=0,
即b=
a.
故选:D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示是长方体的平面展开图.
(1)将平面展开图折叠成一个长方体,与字母N重合的点有哪几个?
(2)若AG=CK=14 cm,FG=2 cm,LK=5 cm,则该长方体的表面积和体积分别是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】一个几何体由几个棱长均为1的小正方体搭成,从上面看到的几何体的形状图如图(1)所示,正方形中的数字表示该位置的小正方体的个数.
(1)请在图(2)的方格纸中画出从正面看和从左面看到的几何体的形状图;
(2)根据从三个方向看到的几何体的形状图,请你计算该几何体的表面积为________平方单位(包含底面);
(3)若从上面看到的几何体的形状图不变,几何体各位置的小正方体的个数可以改变,则搭成这样的几何体的表面积最大为________平方单位(包含底面).

图(1) 图(2)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AB=3,AC=4,BC=5,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是( )

A.相切
B.相交
C.相离
D.无法确定 -
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.
某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.
思路:(1) 作AD⊥BC于D,设BD = x,用含x的代数式表示CD;(2)根据勾股定理,利用AD作为“桥梁”,建立方程模型,求出x;(3)利用勾股定理求出AD的长,再计算三角形面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价8.5折优惠.设顾客预计累计购物
元(
).(1)请用含
的代数式分别表示顾客在两家超市购物所付的费用;(2)李明准备购买500元的商品,你认为他应该去哪家超市?请说明理由;
(3)计算一下,李明购买多少元的商品时,到两家超市购物所付的费用一样?
-
科目: 来源: 题型:
查看答案和解析>>【题目】我们运用图(Ⅰ)中大正方形的面积可表示为(a+b)2,也可表示为c3+4(
ab),即(a+b)2=c2+4(
ab)由此推导出一个重要的结论a2+b2=c2,这个重要的结论就是著名的“勾股定理”.这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”.


(1)请你用图(Ⅱ)(2002年国际数学家大会会标)的面积表达式验证勾股定理(其中四个直角三角形的较大的直角边长都为a,较小的直角边长都为b,斜边长都为c).
(2)请你用(Ⅲ)提供的图形进行组合,用组合图形的面积表达式验证:(x+2y)2=x2+4xy+4y2.
相关试题