【题目】901班的全体同学根据自己的兴趣爱好参加了六个学生社团(每个学生必须参加且只参加一个),为了了解学生参加社团的情况,学生会对该班参加各个社团的人数进行了统计,绘制成了如图不完整的扇形统计图,已知参加“读书社”的学生有15人,请解答下列问题:
![]()
(1)该班的学生共有 名;
(2)若该班参加“吉他社”与“街舞社”的人数相同,请你计算,“吉他社”对应扇形的圆心角的度数;
(3)901班学生甲、乙、丙是“爱心社”的优秀社员,现要从这三名学生中随机选两名学生参加“社区义工”活动,请你用画树状图或列表的方法求出恰好选中甲和乙的概率.
参考答案:
【答案】(1)60;(2)36°;(3)
.
【解析】试题(1)利用参加“读书社”的学生数除以所占比例进而求出总人数;
(2)首先求出参加“吉他社”的学生在全班学生中所占比例,进而求出对应扇形的圆心角的度数;
(3)首先画出树状图,进而求出恰好选中甲和乙的概率.
试题解析:(1)∵参加“读书社”的学生有15人,且在扇形统计图中,所占比例为:25%,∴该班的学生共有:15÷25%=60(人);故答案为:60;
(2)参加“吉他社”的学生在全班学生中所占比例为:
=10%,所以,“吉他社”对应扇形的圆心角的度数为:360°×10%=36°;
(3)画树状图如下:
,
由树状图可知,共有6种可能的情况,其中恰好选中甲和乙的情况有2种,故P(选中甲和乙)=
=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).

(1)在图中作出
关于
轴对称的
.(2)写出点
的坐标(直接写答案).A1_____________,B1______________,C1______________
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AD⊥BC于D,AD=BD,AC=BE.
(1)求证:∠BED=∠C;
(2)猜想并说明BE和AC有什么数量和位置关系。

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,ACB和DCE都是等腰直角三角形,∠ACB=∠DCE=90
,连接AE、BD交于点O. AE与DC交于点M,BD与AC交于点N.(1)如图①,求证:AE=BD;
(2)如图②,若AC=DC,在不添加任何辅助线的情况下,请直接写出图②中四对全等的直角三角形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,由正比例函数
沿
轴的正方向平移4个单位而成的一次函数
的图像与反比例函数
(
)在第一象限的图像交于A(1,n)和B两点.(1)求一次函数
和反比例函数的解析式;(2)求△ABO的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购.经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.
(1)求甲、乙两种型号设备的价格;
(2)该公司经决定购买甲型设备不少于3台,预算购买节省能源的新设备的资金不超过110万元,你认为该公司有哪几种购买方案;
(3)在(2)的条件下,已知甲型设备每月的产量为240吨,乙型设备每月的产量为180吨.若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】近几年,我国国家海洋局高度重视海上巡逻.如图,上午9时,巡逻船位于A处,观测到某港口城市P位于巡逻船的北偏西67.5°,巡逻船以21海里/时的速度向正北方向行驶,下午2时巡逻船到达B处,这时观测到城市P位于巡逻船的南偏西36.9°方向,求此时巡逻船所在B处与城市P的距离?(参考数据:sin36.9°≈
,tan36.9°≈
,sin67.5°≈
,tan67.5°≈
)
相关试题