【题目】如图,已知二次函数 y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论: ①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0; 其中正确的结论有( )![]()
A.1 个
B.2 个
C.3 个
D.4 个
参考答案:
【答案】C
【解析】解:∵二次函数y=ax2+bx+c图象经过原点, ∴c=0,
∴abc=0,故①正确;
∵x=1时,y<0,
∴a+b+c<0,故②不正确;
∵抛物线开口向下,
∴a<0,
∵抛物线的对称轴是x=﹣
,
∴﹣
=﹣
,
∴b=3a,
又∵a<0,b<0,
∴a>b,故③正确;
∵二次函数y=ax2+bx+c图象与x轴有两个交点,
∴△>0,
∴b2﹣4ac>0,4ac﹣b2<0,故④正确;
综上,可得正确结论有3个:①③④.
故选C.
首先根据二次函数y=ax2+bx+c的图象经过原点,可得c=0,所以abc=0;然后根据x=1时,y<0,可得a+b+c<0;再根据图象开口向下,可得a<0,图象的对称轴为x=﹣
=﹣
,所以b=3a,a>b;最后根据二次函数y=ax2+bx+c图象与x轴有两个交点,可得△>0,所以b2﹣4ac>0,4ac﹣b2<0,据此解答即可
-
科目: 来源: 题型:
查看答案和解析>>【题目】问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.
小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.
问题迁移:
(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;
(2)在(1)的条件下,如果点P在A、M两点之间和B、O两点之间上运动时(点P与点A、B、O三点不重合),请你分别直接写出∠CPD、∠α、∠β之间的数量关系.
,图1)
,图2)
,图3)
,备用图) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线y=﹣
x2+bx+4与x轴相交于A,B两点,与y轴相交于点C,若已知B点的坐标为B(8,0)
(1)求抛物线的解析式及其对称轴.
(2)连接AC、BC,试判断△AOC与△COB是否相似?并说明理由.
(3)M为抛物线上BC之间的一点,N为线段BC上的一点,若MN∥y轴,求MN的最大值;
(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】下列计算正确的是( )
A.(
)﹣2=9
B.
=﹣2
C.(﹣2)0=﹣1
D.|﹣5﹣3|=2 -
科目: 来源: 题型:
查看答案和解析>>【题目】下图为人民公园中的荷花池,现要测量此荷花池两旁A、B两棵树间的距离(我们不能直接量得).请你根据所学知识,以卷尺和测角仪为测量工具设计一种测量方案.
要求:(1)画出你设计的测量平面图;
(2)简述测量方法,并写出测量的数据(长度用
…表示;角度用
…表示);(3)根据你测量的数据,计算A、B两棵树间的距离.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,AB∥CD,点P为定点,E、F分别是AB、CD上的动点.

(1)求证:∠P=∠BEP+∠PFD;
(2)若点M为CD上一点,如图2,∠FMN=∠BEP,且MN交PF于N.试说明∠EPF与∠PNM的数量关系,并证明你的结论;
(3)移动E、F使得∠EPF=90°,如图3,作∠PEG=∠BEP,求∠AEG与∠PFD度数的比值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】现在,苏宁商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.
(1)顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?
(2)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?
(3)小张按合算的方案,把这台冰箱买下,如果商场还能盈利25%,这台冰箱的进价是多少元?
相关试题