【题目】如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2,B3…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记a1,第2个等边三角形的边长记为a2,以此类推,若OA1=3,则a2=_______,a2019=_______.
![]()
参考答案:
【答案】6; 3×22018.
【解析】
根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及a2=2a1=6,得出a3=4a1,a4=8a1,a5=16a1…进而得出答案.
解: 如图,![]()
∵△A1B1A2是等边三角形,
∴A1B1=A2B1,∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°-120°-30°=30°,
又∵∠3=60°,
∴∠5=180°-60°-30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=3,
∴A2B1=3,
∵△A2B2A3、△A3B3A4是等边三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴a2=2a1=6,
a3=4a1,
a4=8a1,
a5=16a1,
以此类推:a2019=22018a1=3×22018
故答案是:6;3×22018.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在坡顶
处的同一水平面上有一座古塔
,数学兴趣小组的同学在斜坡底
处测得该塔的塔顶
的仰角为
,然后他们沿着坡度为
的斜坡
攀行了
米,在坡顶
处又测得该塔的塔顶
的仰角为
.求古塔
的高度.(结果精确到
米,参考数据:
,
,
)
-
科目: 来源: 题型:
查看答案和解析>>【题目】在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套,设销售单价为x(120>x≥60)元,销售量为y套.
(1)求出y与x的函数关系式;
(2)当销售单价为多少元时,月销售额为14000元,此月共盈利多少元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小聪和小明沿同一条路同时从学校出发到学校图书馆查阅资料,学校与图书馆的路程是
千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达图书馆,图中折线
和线段
分别表示两人离学校的路程
(千米)与所经过的时间
(分钟)之间的函数关系,请根据图象回答下列问题:
(1)小聪在图书馆查阅资料的时间为 分钟,小聪返回学校的速度为 千米/分钟;
(2)请你求出小明离开学校的路程
(千米)与所经过的时间
(分钟)之间的函数关系;(3)求线段
的函数关系式;(4)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?
-
科目: 来源: 题型:
查看答案和解析>>【题目】先阅读下面的例题,再按要求解答后面的问题.
例题:解一元二次不等式x2﹣3x+2>0
解:令y=x2﹣3x+2,画出y=x2﹣3x+2如图所示,由图象可知:
当x<1或x>2时,y>0所以一元二次不等式x2﹣3x+2>0的解集为x<1或x>2
(1)填空:x2﹣3x+2<0的解集为 ;x2﹣3x≥0的解集为 .
(2)用类似的方法解一元二次不等式:﹣x2﹣2x+3>0.

-
科目: 来源: 题型:
查看答案和解析>>【题目】山地自行车越来越受中学生的喜爱.一网店经营的一个型号山地自行车,今年一月份销售额为30000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是27000元.
(1)求二月份每辆车售价是多少元?
(2)为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利35%,求每辆山地自行车的进价是多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】下图是由边长为1个单位长度的小正方形组成的网格,线段AB的端点在格点上.
(1)请建立适当的平面直角坐标系xOy,使得A点的坐标为(-3,-1),在此坐标系下,B点的坐标为________________;
(2)将线段BA绕点B逆时针旋转90°得线段BC,画出BC;在第(1)题的坐标系下,C点的坐标为__________________;
(3)在第(1)题的坐标系下,二次函数y=ax2+bx+c(a≠0)的图象过O、B、C三点,则此函数图象的对称轴方程是________________.

【答案】 (-1,2) (2,0) x=1
【解析】分析:
根据点
的坐标建立坐标系,即可写出点
的坐标.
画出点
旋转后的对应点
连接
,写出点
的坐标.
用待定系数法求出函数解析式,即可求出对称轴方程.详解:(1)建立坐标系如图,
B点的坐标为
;
(2)线段BC如图,C点的坐标为

(3)把点
代入二次函数
,得
解得:
二次函数解析为:
对称轴方程为:
故对称轴方程是

点睛:考查图形与坐标;旋转、对称变换;待定系数法求二次函数解析式,二次函数的图象与性质.熟练掌握各个知识点是解题的关键.
【题型】解答题
【结束】
18【题目】特殊两位数乘法的速算——如果两个两位数的十位数字相同,个位数字相加为10,那么能立说出这两个两位数的乘积.如果这两个两位数分别写作AB和AC(即十位数字为A,个位数字分别为B、C,B+C=10,A>3),那么它们的乘积是一个4位数,前两位数字是A和(A+1)的乘积,后两位数字就是B和C的乘积.
如:47×43=2021,61×69=4209.
(1)请你直接写出83×87的值;
(2)设这两个两位数的十位数字为x(
x>3),个位数字分别为y和z(y+z=10),通过计算验证这两个两位数的乘积为100x(x+1)+yz. (3)99991×99999=___________________(直接填结果)
相关试题