【题目】某厂家生产一种新型电子产品,制造时每件的成本为40元,通过试销发现,销售量
万件
与销售单价
元
之间符合一次函数关系,其图象如图所示.
求y与x的函数关系式;
物价部门规定:这种电子产品销售单价不得超过每件80元,那么,当销售单价x定为每件多少元时,厂家每月获得的利润
最大?最大利润是多少?
![]()
参考答案:
【答案】(1)
;(2)当销售单价x定为每件80元时,厂家每月获得的利润
最大,最大利润是4800元.
【解析】
根据函数图象经过点
和点
,利用待定系数法即可求出y与x的函数关系式;
先根据利润
销售数量
销售单价
成本
,由试销期间销售单价不低于成本单价,也不高于每千克80元,结合电子产品的成本价即可得出x的取值范围,根据二次函数的增减性可得最值.
解:
设y与x的函数关系式为
,
函数图象经过点
和点
,
,解得:
,
与x的函数关系式为
.
由题意得:
.
试销期间销售单价不低于成本单价,也不高于每千克80元,且电子产品的成本为每千克40元,
自变量x的取值范围是
.
,
当
时,w随x的增大而增大,
时,w有最大值,
当
时,
,
答:当销售单价x定为每件80元时,厂家每月获得的利润
最大,最大利润是4800元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.

(1)当∠BDA=115°时,∠BAD= °;点D从B向C运动时,∠BDA逐渐变 (填“大”或“小”);
(2)当DC等于多少时,△ABD≌△DCE,请说明理由;
(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三角形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣
与x轴交于A(1,0),B(﹣3,0)两点,现有经过点A的直线l:y=kx+b1与y轴交于点C,与抛物线的另个交点为D.(1)求抛物线的函数表达式;
(2)若点D在第二象限且满足CD=5AC,求此时直线1的解析式;在此条件下,点E为直线1下方抛物线上的一点,求△ACE面积的最大值,并求出此时点E的坐标;
(3)如图,设P在抛物线的对称轴上,且在第二象限,到x轴的距离为4,点Q在抛物线上,若以点A,D,P,Q为顶点的四边形能否成为平行四边形?若能,请直接写出点Q的坐标;若不能,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某中学为了解该校九年级学生对观看“中国诗词大会”节目喜爱程度,对该校九年级学生进行了随机抽样调查,
调查时,将喜爱程度分为四级:A级
非常喜欢
,B级
喜欢
,C级
一般
,D级
不喜欢
根据调查结果,绘制成如下两幅不完整的统计图
请你结合图中信息解答下列问题:
本次调查共抽取______名学生,在扇形图中,表示A级的扇形的圆心角为______
;
若该校九年级共有学生300人,请你估计不喜欢观看“中国诗词大会”节目的有多少人?并补全条形图;
已知在A级学生中有3名男生,现要从本次调查中的5名A级学生中,选出2名参加全市中学生诗词大会比赛,请用“列表”或“树形图”的方法,求选出的2名学生中至少有1名女生的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示.在△ABC中,内角∠BAC与外角∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于F,交AB于G,连接CP.下列结论:①∠ACB=2∠APB;②S△PAC:S△PAB=AC:AB;③BP垂直平分CE;④∠PCF=∠CPF.其中,正确的有( )

A. 1个B. 2个C. 3个D. 4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t秒.

(1)求BC边的长;
(2)当△ABP为直角三角形时,求t的值;
(3)当△ABP为等腰三角形时,求t的值
-
科目: 来源: 题型:
查看答案和解析>>【题目】问题情境
小明和小丽共同探究一道数学题:
如图①,在△ABC中,点D是边BC的中点,∠BAD=65°,∠DAC=50°,AD=2,
求AC.
探索发现
小明的思路是:延长AD至点E,使DE=AD,构造全等三角形.
小丽的思路是:过点C作CE∥AB,交AD的延长线于点E,构造全等三角形.
选择小明、小丽其中一人的方法解决问题情境中的问题.
类比应用
如图②,在四边形ABCD中,对角线AC、BD相交于点O,点O是BD的中点,

AB⊥AC.若∠CAD=45°,∠ADC=67.5°,AO=2,则BC的长为___________.
相关试题