【题目】在正方形ABCD中,BD是一条对角线,点P在CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QM⊥BD于M,连接AM,PM(如图1).

(1)判断AM与PM的数量关系与位置关系并加以证明;

(2)若点P在线段CD的延长线上,其它条件不变(如图2),(1)中的结论是否仍成立?请说明理由.


参考答案:

【答案】1AM=PM,AM⊥PM.2成立,理由见解析.

【解析】

试题分析:(1)先判断出DMQ是等腰直角三角形,再判断出MDP≌△MQC(SAS),最后进行简单的计算即可;

(2)先判断出DMQ是等腰直角三角形,再判断出MDP≌△MQC(SAS),最后进行简单的计算即可.

试题解析:(1)连接CM,

∵四边形ABCD是正方形,QM⊥BD,

∴∠MDQ=45°,

∴△DMQ是等腰直角三角形.

∵DP=CQ,

在△MDP与△MQC中

∴△MDP≌△MQC(SAS),

∴PM=CM,∠MPC=∠MCP.

∵BD是正方形ABCD的对称轴,

∴AM=CM,∠DAM=∠MCP,

∴∠AMP=180°-∠ADP=90°,

∴AM=PM,AM⊥PM.

(2)成立,

理由如下:

连接CM,

∵四边形ABCD是正方形,QM⊥BD,

∴∠MDQ=45°,

∴△DMQ是等腰直角三角形.

∵DP=CQ,

在△MDP与△MQC中

∴△MDP≌△MQC(SAS),

∴PM=CM,∠MPC=∠MCP.

∵BD是正方形ABCD的对称轴,

∴AM=CM,∠DAM=∠MCP,

∴∠DAM=∠MPC,

∵∠PND=∠ANM

∴∠AMP=∠ADP=90°

∴AM=PM,AM⊥PM.

关闭