【题目】如图所示的直角坐标系中,解答下列问题:
(1)分别写出A、B两点的坐标;
(2)将△ABC向左平移3个单位长度,再向上平移5个单位长度,画出平移后的△A1B1C1;
(3)求 △A1B1C1的面积。
![]()
参考答案:
【答案】(1)A(2,0) B(-1,-4);(2)作图见解析;(3)![]()
【解析】试题分析:(1)从直角坐标系中读出点的坐标.
(2)根据平移规律找出各点平移后后得到对应点,顺次连接即可.
(3)根据S△ABC=S长方形ADEF-S△ABD-S△EBC-S△ACF,即可求得三角形的面积.
试题解析:(1)A(2,0) B(-1,-4)
(2)如图,
![]()
(3)如图,
![]()
S△ABC=S长方形DBEF-S△ABD-S△EBC-S△ACF
=4×4-
×4×1-
×3×1-
×4×3=
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一拱形公路桥,圆弧形桥拱的水面跨度AB=80 m,桥拱到水面的最大高度为20 m.(1)求桥拱的半径.
(2)现有一艘宽60 m,顶部截面为长方形且高出水面9 m的轮船要经过这座拱桥,这艘轮船能顺利通过吗?请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列7个事件中:(1)掷一枚硬币,正面朝上.(2)从一副没有大小王的扑克牌中抽出一张恰为黑桃.(3)随意翻开一本有400页的书,正好翻到第100页.(4)天上下雨,马路潮湿.(5)你能长到身高4米.(6)买奖券中特等大奖.(7)掷一枚正方体骰子,得到的点数<7.其中(将序号填入题中的横线上即可)确定事件为________;不确定事件为________;不可能事件为________;必然事件为________;不确定事件中,发生可能性最大的是________,发生可能性最小的是________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.
(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?
(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.
(1)在图中画出与关于直线
成轴对称的△A′B′C′;(2)线段CC′被直线
;(3)△ABC的面积为 ;
(4)在直线
上找一点P,使PB+PC的长最短.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点P在y轴上,⊙P交x轴于A,B两点,连接BP并延长交⊙P于点C,过点C的直线y=2x+b交x轴于点D,且⊙P的半径为
,AB=4.(1)求点B,P,C的坐标;(2)求证:CD是⊙P的切线.

-
科目: 来源: 题型:
查看答案和解析>>【题目】投掷一枚质地均匀的正方体骰子.
(1)下列说法中正确的有 . (填序号)
①向上一面点数为1点和3点的可能性一样大;
②投掷6次,向上一面点数为1点的一定会出现1次;
③连续投掷2次,向上一面的点数之和不可能等于13.
(2)如果小明连续投掷了10次,其中有3次出现向上一面点数为6点,这时小明说:投掷正方体骰子,向上一面点数为6点的概率是
. 你同意他的说法吗?说说你的理由.(3)为了估计投掷正方体骰子出现6点朝上的概率,小亮采用转盘来代替骰子做实验.下图是一个可以自由转动的转盘,请你将转盘分为2个扇形区域,分别涂上红、白两种颜色,使得转动转盘,当转盘停止转动后,指针落在红色区域的概率与投掷正方体骰子出现6点朝上的概率相同.(友情提醒:在转盘上用文字注明颜色和扇形圆心角的度数.)

相关试题