【题目】如图,四边形ABCD中,AD=BC,AB=CD,E,F分别是AB,CD上的点,且∠DAF=∠BCE,
(1)求证:AE=CF;
(2)若将此题中的条件改为:“E,F分别是AB,CD延长线上的点”,其余条件不变,此时,∠ABC=60°,∠BEC=40°,作∠ABC的平分线BN交AF于M,交AD于N,求∠AMN的度数(要求:画示意图,不写画法,写推理过程)
![]()
参考答案:
【答案】(1)见解析;(2)10°
【解析】分析:(1)易得四边形ABCD是平行四边形,那么∠D=∠B,易得△ADF≌△CBE,那么BE=DF,∴AE=CF;
(2)利用外角等于和它不相邻的2个内角的和可得∠BCE的度数,也就求得了∠DAF的度数,利用角平分线定义易得∠NBC的度数,也就求得了∠MND的度数,利用三角形的外角的性质即可求得∠AMN的度数.
详解:(1)∵AD=BC,AB=CD,
∴四边形ABCD是平行四边形,
∴∠D=∠B,
∵∠DAF=∠BCE,
∴△ADF≌△CBE,
∴BE=DF,
∴AE=CF;
(2)∵∠ABM=∠CBM=
∠ABC=30°,
又∵AD∥BC
∴∠MND=∠CBM=30°
∵∠ABC=∠E+∠BCE,
∴∠BCE=∠ABC﹣∠E=60°﹣40°=20°
∴∠FAD=∠BCE=20°
又∵∠MND=∠FAD+∠AMN
∴∠AMN=∠MND﹣∠FAD=30°﹣20°=10°.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】函数
的图象如图所示,则结论:①两函数图象的交点
的坐标为(2,2);②当x>2时,
;③当x=1时,BC=3;④当x逐渐增大时,
随着
的增大而增大,
随着
的增大而减小.则其中正确结论的序号是( ) 
A.①②B.①③C.②④D.①③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:

①“龟兔再次赛跑”的路程为1000米;
②兔子和乌龟同时从起点出发;
③乌龟在途中休息了10分钟;
④兔子在途中750米处追上乌龟.
其中正确的说法是 .(把你认为正确说法的序号都填上)
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲,乙两人同时各接受了600个零件的加工任务,甲比乙每分钟加工的数量多,两人同时开始加工,加工过程中其中一人因故障停止加工几分钟后又继续按原速加工,直到他们完成任务,如图表示甲比乙多加工的零件数量
(个)与加工时间
(分)之间的函数关系,观察图象解决下列问题:(1)点B的坐标是________,B点表示的实际意义是___________ _____;
(2)求线段BC对应的函数关系式和D点坐标;
(3)乙在加工的过程中,多少分钟时比甲少加工100个零件?
(4)为了使乙能与甲同时完成任务,现让丙帮乙加工,直到完成.丙每分钟能加工3个零件,并把丙加工的零件数记在乙的名下,问丙应在第多少分钟时开始帮助乙?并在图中用虚线画出丙帮助后y与x之间的函数关系的图象.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某物流公司的快递车和货车每天沿同一条路线往返于A、B两地,快递车比货车多往返一趟.如图所示,表示货车距离A地的路程y(单位:h)与所用时间x(单位h)的图像,其间在B地装卸货物2h.已知快递车比货车早1h出发,最后一次返回A地比货车晚1h.若快递车往返途中速度不变,且在A、B两地均不停留,则两车在往返途中相遇的次数为________次.

-
科目: 来源: 题型:
查看答案和解析>>【题目】一水池有两个进水口,一个出水口,一个水口在单位时间内的进、出水量如图(a)、(b)所示,某天从0点到6点,该水池的蓄水量如图(c)所示,给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点一定不进水不出水.则正确的论断是________.(填上所有正确论断的序号)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,过y轴上任意一点p,作x轴的平行线,分别与反比例函数y=-
和y=
的图象交于A点和B点.若C为x轴上任意一点,连接AC、BC,则△ABC的面积为 .
相关试题