【题目】解方程:①
;②
;③
;④
.较简便的解法是( )
A. 依次用直接开平方法、配方法、公式法和因式分解法
B. ①用直接开平方法,②用公式法,③④用因式分解法
C. 依次用因式分解法、公式法、配方法和因式分解法
D. ①用直接开平方法,②③用公式法,④用因式分解法
参考答案:
【答案】D
【解析】
要看式子的特点,先看它是几项式,再看符合哪个特点从而选择合适的方法:①用直接开平方法,②③用公式法,④用因式分解法.
①3x2-12=0符合ax2=b(a,b同号且a≠0)的特点所以用直接开平方法;
②3x2-4x-2=0,等号左边有3项,方程的左边利用学过的方法不能分解,所以需要用求根公式法;
③20x2-9x-16=0,等号左边有3项,方程的左边利用学过的方法不能分解,所以需要用求根公式法;
④3(4x-1)2=7(4x-1),可以把4x-1看做是个整体,利用因式分解法解方程,
故选D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】给出以下五个方程:
①
;②
;③
;④
;⑤
其中一元二次方程有________(写序号)
请你选择其中的一个一元二次方程用适当的方法求出它的解. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Δ
中,已知
点
为
中点,点
在线段
上以每秒
的速度由
点向
点运动,同时点
在线段
上由
点向
点运动。当点
的运动速度为每秒____
时,能够在某一时刻使得Δ
与Δ
全等
-
科目: 来源: 题型:
查看答案和解析>>【题目】选取二次三项式
中的两项,配成完全平方式的过程叫做配方.例如①选取二次项和一次项配方:
;②选取二次项和常数项配方:
,或
;③选取一次项和常数项配方:
.根据上述材料,解决下面问题:
写出
的两种不同形式的配方;
若
,求
的值;
若关于
的代数式
是完全平方式,求
的值;
用配方法证明:无论
取什么实数时,总有
恒成立. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图,
垂直
,AB=6,Δ
是等边三角形,点
在射线
上运动,以
为边向右上方作等边Δ
,射线
与射线
交于点
.(1)如图1,当点
运动到与点
成一条直线时,
(填长度),∠
度.
(2)在图2中,①求证:∠
;②随着点
的运动,∠
的度数是否发生改变?若不变,求出这个角的度数;若改变,说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若
,
是关于
的方程
的两个实数根,且
(
是整数),则称方程
为“偶系二次方程”.如方程
,
,
,
,
,都是“偶系二次方程”.
判断方程
是否是“偶系二次方程”,并说明理由;
对于任意一个整数
,是否存在实数
,使得关于
的方程
是“偶系二次方程”,并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,DC=12,AD=13,求四边形ABCD的面积.

相关试题