【题目】如图,在⊿
中,
,点
分别在
边上,且
,
.
⑴.求证:⊿
是等腰三角形;
⑵.当
时,求
的度数.
![]()
参考答案:
【答案】(1)证明见解析;(2)70°
【解析】试题分析:(1)由AB=AC,∠ABC=∠ACB,BE=CF,BD=CE.利用边角边定理证明△DBE≌△CEF,然后即可求证△DEF是等腰三角形.
(2)根据∠A=40°可求出∠ABC=∠ACB=70°根据△DBE≌△CEF,利用三角形内角和定理即可求出∠DEF的度数.
试题解析:证明:∵AB=AC,∴∠ABC=∠ACB.在△DBE和△CEF中,∵
,∴△DBE≌△CEF,∴DE=EF,∴△DEF是等腰三角形;
(2)∵△DBE≌△CEF,∴∠1=∠3,∠2=∠4.∵∠A+∠B+∠C=180°,∴∠B=
(180°﹣40°)=70°,∴∠1+∠2=110°,∴∠3+∠2=110°,∴∠DEF=70°.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线
与x轴交于A,B两点,它们的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F.已知点A的坐标为(﹣1,0).(1)求该抛物线的解析式及顶点M的坐标;
(2)求△EMF与△BNF的面积之比.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是小明利用等腰直角三角板测量旗杆高度的示意图.等腰直角三角板的斜边BD与地面AF平行,当小明的视线恰好沿BC经过旗杆顶部点E时,测量出此时他所在的位置点A与旗杆底部点F的距离为10米.如果小明的眼睛距离地面1.7米,那么旗杆EF的高度为( )

A. 10米 B. 11.7米 C. 10
米 D. (5
+1.7)米 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AD为等边△ABC的高,E、F分别为线段AD、AC上的动点,且AE=CF,当BF+CE取得最小值时,∠AFB=( )

A. 112.5°B. 105°C. 90°D. 82.5°
-
科目: 来源: 题型:
查看答案和解析>>【题目】为适应新中考英语听说机考,九年级甲、乙两位同学使用某手机软件进行英语听说练习并记录了40次的练习成绩.甲、乙两位同学的练习成绩统计结果如图所示:

下列说法正确的是( )
A. 甲同学的练习成绩的中位数是38分
B. 乙同学的练习成绩的众数是15分
C. 甲同学的练习成绩比乙同学的练习成绩更稳定
D. 甲同学的练习总成绩比乙同学的练习总成绩低
-
科目: 来源: 题型:
查看答案和解析>>【题目】某移动通讯公司有两种移动电话计费方式,这两种计费方式中月使用费y(元)与主叫时间x(分)的对应关系如图所示:(主叫时间不到1分钟,按1分钟收费)下列三个判断中正确的是( )
①方式一每月主叫时间为300分钟时,月使用费为88元
②每月主叫时间为350分钟和600分钟时,两种方式收费相同
③每月主叫时间超过600分钟,选择方式一更省钱

A. ①② B. ①③ C. ②③ D. ①②③
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧OB与墙MN平行且距离为0.8米,一辆小汽车车门宽AO为1.2米,当车门打开角度∠AOB为40°时,车门是否会碰到墙?______;(填“是”或“否”)请简述你的理由_______.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)

相关试题