【题目】小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.
(1)以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′;
(2)△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.
![]()
参考答案:
【答案】(1)见解析;(2)5π(平方单位).
【解析】(1)连接AO、BO、CO并延长到2AO、2BO、2CO长度找到各点的对应点,顺次连接即可.
(2)△A′B′C′的A′、C′绕点B′顺时针旋转90°得到对应点,顺次连接即可.A′B′在旋转过程中扫过的图形面积是一个扇形,根据扇形的面积公式计算即可.
解:(1)见图中△A′B′C′
(直接画出图形,不画辅助线不扣分)![]()
(2)见图中△A″B′C″
(直接画出图形,不画辅助线不扣分)
S=
π(22+42)=
π20=5π(平方单位).
-
科目: 来源: 题型:
查看答案和解析>>【题目】若10m=5,10n=3,则102m+3n= .
【答案】675.
【解析】102m+3n=102m103n=(10m)2(10n)3=5233=675,
故答案为:675.
点睛:此题考查了幂的乘方与积的乘方, 同底数幂的乘法. 首先根据同底数幂的乘法法则,可得102m+3n=102m×103n,然后根据幂的乘方的运算方法,可得102m×103n=(10m)2×(10n)3,最后把10m=5,10n=2代入化简后的算式,求出102m+3n的值是多少即可.
【题型】填空题
【结束】
18【题目】计算:
(1)(5mn2﹣4m2n)(﹣2mn)
(2)(x+7)(x﹣6)﹣(x﹣2)(x+1)
(3) (-
)2 016×161 008; -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示的一块地,已知AD=4m,CD=3m,∠ADC=90°,AB=13m,BC=12m,求这块地的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在直角梯形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0), (2,6),点D为AB上一点,且BD=2AD,双曲线y=
(k>0)经过点D,交BC于点E.(1)求双曲线的解析式;
(2)求四边形ODBE的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】若(a﹣b)2=4,ab=5,则(a+b)2=_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
(1)(5mn2﹣4m2n)(﹣2mn)
(2)(x+7)(x﹣6)﹣(x﹣2)(x+1)
(3) (-
)2 016×161 008;【答案】(1)﹣10m2n3+8m3n2;(2)2x﹣40;(3)1.
【解析】试题分析:(1)原式利用单项式乘以多项式法则计算即可得到结果;
(2)原式两项利用多项式乘以多项式法则计算,去括号合并即可得到结果;
(3)先根据幂的乘方的逆运算,把(-
)2 016化为(
)1008,再根据积的乘方的逆运算计算即可.试题解析:(1)原式=(5mn2)(﹣2mn)+(﹣4m2n)(﹣2mn)=﹣10m2n3+8m3n2;
(2)原式=x2﹣6x+7x﹣42﹣x2﹣x+2x+2=2x﹣40.
(3)原式=(
)1008×161 008=(
×16)1 008=1.【题型】解答题
【结束】
19【题目】如图,方格图中每个小正方形的边长为1,点A、B、C都是格点.

(1)画出△ABC关于直线BM对称的△A1B1C1;
(2)写出AA1的长度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在一幅长60 cm、宽40 cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是2 816 cm2,设金色纸边的宽为x cm,那么x满足的方程是( )

A. (60+x)(40+2x)=2 816 B. (60+x)(40+x)=2 816
C. (60+2x)(40+x)=2 816 D. (60+2x)(40+2x)=2 816
相关试题