【题目】如图所示,在
中,内角
与外角
的平分线相交于点
,
,
交
于
,交
于
,连接
、
,下列结论:①
;②
;③
垂直平分
;④
.其中正确的是( )
![]()
A. ①②④B. ①③④C. ②③④D. ①③
参考答案:
【答案】B
【解析】
①根据角平分线的性质和外角的性质即可得到结论;
②根据角平分线的性质和三角形的面积公式即可求出结论;
③根据线段垂直平分线的性质即可得结果;
④根据角平分线的性质和平行线的性质即可得到结果.
①
![]()
![]()
,
②∵AP平分∠BAC,
∴P到AC,AB的距离相等,
∴
,故错误.
③∵BE=BC,BP平分∠CBE,
∴BP垂直平分CE(三线合一),
④∵∠BAC与∠CBE的平分线相交于点P,可得点P也位于∠BCD的平分线上,
∴∠DCP=∠FCP,
又∵PG∥AD,
∴∠FPC=∠DCP,
∴
.
故①③④正确.
故选:B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,CD为AB边上的高,AD=8,CD=4,BD=3.动点P从点A出发,沿射线AB运动,速度为1个单位/秒,运动时间为t秒.

(1)当t为何值时,△PDC≌△BDC;
(2)当t为何值时,△PBC是等腰三角形?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,图中的小方格都是边长为1的正方形, △ABC与△A′ B′ C′是关于点0为位似中心的位似图形,它们的顶点都在小正方形的顶点上.

(1)画出位似中心点0;
(2)求出△ABC与△A′B′C′的位似比;
(3)以点0为位似中心,再画一个△A1B1C1,使它与△ABC的位似比等于1.5.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,∠ACB=90°,AC=8cm,BC=6cm.点P从A点出发沿A→C→B路径以每秒1cm的运动速度向终点B运动;同时点Q从B点出发沿B→C→A路径以每秒vcm的速度向终点A运动.分别过P和Q作PE⊥AB于E,QF⊥AB于F.

(1)设运动时间为t秒,当t= 时,直线BP平分△ABC的面积.
(2)当Q在BC边上运动时(t>0),且v=1时,连接AQ、连接BP,线段AQ与BP可能相等吗?若能,求出t的值;若不能,请说明理由.
(3)当Q的速度v为多少时,存在某一时刻(或时间段)可以使得△PAE与△QBF全等.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=k1x+b与双曲线y=
相交于A(1,2)、B(m,-1)两点.(1)求直线和双曲线的解析式;
(2)若A1(x1,y1)、A2(x2,y2)、A3(x3,y3)为双曲线上的三点,且x1<x2<0<x3,请直接写出y1、y2、y3的大小关系式;
(3)观察图象,请直接写出不等式k1x+b>
的解集.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AB=AC=12厘米,BC=9厘米,点D为AB的中点,如果点P在线段BC上以v厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动。若点Q的运动速度为3厘米/秒,则当△BPD与△CQP全等时,v的值为_____________

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).

(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?
(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.
相关试题