【题目】如图,四边形ABCD为矩形,E为BC边中点,以AD为直径的⊙O与AE交于点F.
(1)求证:四边形AOCE为平行四边形;
(2)求证:CF与⊙O相切;
(3)若F为AE的中点,求∠ADF的大小.
![]()
参考答案:
【答案】(1)证明见解析;(2)证明见解析;(3)30°.
【解析】
试题分析:(1)根据矩形的性质得到AD∥BC,AD=BC,∠ADC=90°,由E为BC边中点,AO=DO,得到AO=
AD,EC=
BC,等量代换得到AO=EC,AO∥EC,即可得到结论;
(2)利用平行四边形的判定方法得出四边形OAEC是平行四边形,进而得出△ODC≌△OFC(SAS),求出OF⊥CF,进而得出答案;
(3)如图,连接DE,由AD是直径,得到∠AFD=90°,根据点F为AE的中点,得到DF为AE的垂直平分线,根据线段垂直平分线的性质得到DE=AD,推出△ABE≌△DCE,根据全等三角形的性质得到AE=DE,推出三角形ADE为等边三角形,即可得到结论.
试题解析:(1)∵四边形ABCD是矩形,
∴AD∥BC,AD=BC,∠ADC=90°,
∵E为BC边中点,AO=DO,
∴AO=
AD,EC=
BC,
∴AO=EC,AO∥EC,
∴四边形OAEC是平行四边形;
(2)如图1,连接OF,
![]()
∵四边形OAEC是平行四边形
∴AE∥OC,
∴∠DOC=∠OAF,
∠FOC=∠OFA,
∵OA=OF,
∴∠OAF=∠OFA,
∴∠DOC=∠FOC,
在△ODC与△OFC中,
,
∴△ODC≌△OFC(SAS),
∴∠OFC=∠ODC=90°,
∴OF⊥CF,
∴CF与⊙O相切;
(3)如图2,连接DE,
![]()
∵AD是直径,
∴∠AFD=90°,
∵点F为AE的中点,
∴DF为AE的垂直平分线,
∴DE=AD,
在△ABE与R△DCE中,
,
∴△ABE≌△DCE,
∴AE=DE,
∴AE=DE=AD,
∴三角形ADE为等边三角形,
∴∠DAF=60°,
∴∠ADF=30°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知三条不同的直线a、b、c在同一平面内,下列四条命题:
①如果a∥b,a⊥c,那么b⊥c; ②如果b∥a,c∥a,那么b∥c;
③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.
其中真命题的是__________.(填写所有真命题的序号)
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了响应中央号召,今年我市加大财政支农力度,全市农业支出累计达到235000 000元,其中235000 000元用科学记数法可表示为( )
A.2.34×108元
B.2.35×108元
C.2.35×109 元
D.2.34×109元 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知某种产品的进价为每件40元,现在的售价为每件60元,每星期可卖出300件.市场调查发现,该产品每降价1元,每星期可多卖出20件,由于供货方的原因销量不得超过380件,设这种产品每件降价x元(x为整数),每星期的销售利润为w元.
(1)求w与x之间的函数关系式,并写出自变量x的取值范围;
(2)该产品销售价定为每件多少元时,每星期的销售利润最大?最大利润是多少元?
(3)该产品销售价在什么范围时,每星期的销售利润不低于6000元,请直接写出结果.
-
科目: 来源: 题型:
查看答案和解析>>【题目】方程3x+2=2x-1的解为( )
A. x=-3 B. x=-1 C. x=1 D. x=3
-
科目: 来源: 题型:
查看答案和解析>>【题目】一滴水的质量约0.000051kg,用科学记数法表示这个数为 kg.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一元二次方程x2﹣4x+5=0的根的情况是( )
A.没有实数根
B.有两个相等的实数根
C.有两个不相等的实数根
D.无法确定
相关试题