【题目】设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.如函数y=﹣x+4,当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,恒有1≤y≤3,所以说函数y=﹣x+4是闭区间[1,3]上的“闭函数”,同理函数y=x也是闭区间[1,3]上的“闭函数”.
(1)反比例函数y=
是闭区间[1,2018]上的“闭函数”吗?请判断并说明理由;
(2)如果已知二次函数y=x2﹣4x+k是闭区间[2,t]上的“闭函数”,求k和t的值;
(3)如果(2)所述的二次函数的图象交y轴于C点,A为此二次函数图象的顶点,B为直线x=1上的一点,当△ABC为直角三角形时,写出点B的坐标.
![]()
参考答案:
【答案】(1)反比例函数y=
是闭区间[1,2018]上的“闭函数”(2)t=3(3)当△ABC为直角三角形时,点B的坐标(1,4+
),(1,4﹣
),(1,
),(1,
)
【解析】分析: (1)由k>0可知反比例函数y=
在闭区间[1,2016]上y随x的增大而减小,然后将x=1,x=2018别代入反比例解析式的解析式,从而可求得y的范围,于是可做出判断;
(2)先求得二次函数的对称轴为x=1,a=1>0,根据二次函数的性质可知y=x2-4x+k在闭区间[2,t]上y随x的增大而增大,然后将x=2,y=k-4,x=t,y=t2-4t+k分别代入二次函数的解析式,从而可求得k的值;
(3)根据勾股定理的逆定理,可得方程,根据解方程,可得答案.
详解:
(1)∵k=2018,
∴当1≤x≤2018时,y随x的增大而减小.
∴当x=1时,y=2018,x=2018时,y=1.
∴1≤y≤2108.
∴反比例函数y=
是闭区间[1,2018]上的“闭函数”.
(2)∵x=﹣
=2,a=1>0,
∴二次函数y=x2﹣4x+k在闭区间[2,t]上y随x的增大而增大.
∵二次函数y=x2﹣2x﹣k是闭区间[2,t]上的“闭函数”,
∴当x=2时,y=k﹣4,x=t时,y=t2﹣4t+k.
,
解得k=6,t=3,t=﹣2,
因为t>2,
∴t=2舍去,
∴t=3.
(3)由二次函数的图象交y轴于C点,A为此二次函数图象的顶点,得
A(2,2),C(0,6)设B(1,t),
由勾股定理,得AC2=22+(2﹣6)2,AB2=(2﹣1)2+(2﹣t)2,BC2=12+(t﹣6)2,
①当∠ABC=90°时,AB2+BC2=AC2,即
(2﹣1)2+(2﹣t)2+(t﹣6)2+1=22+(2﹣6)2,
化简,得t2﹣8t+11=0,解得t=4+
或t=4﹣
,
B(1,4+
),(1,4﹣
);
②当∠BAC=90°是,AB2+AC2=BC2,
即(2﹣1)2+(2﹣t)2+22+(2﹣6)2=12+(t﹣6)2,
化简,得8t=12,
解得t=
,
B(1,
),
③当∠ACB=90°时,AC2+CB2=AB2,
即22+(2﹣6)2+12+(t﹣6)2=(2﹣1)2+(2﹣t)2,
化简,得2t=13,
解得t=
,
B(1,
),
综上所述:当△ABC为直角三角形时,点B的坐标(1,4+
),(1,4﹣
),(1,
),(1,
).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图 ,在平面直角坐标系中,直线AB∥ x轴,线段AB与 y 轴交于点M ,已知点 A的坐标是(-2,3), BM4,点C 与点 B 关于 x 轴对称.

(1)在图中描出点C ,并直接写出点 B 和点C 的坐标:B ,C ;
(2)联结 AC 、BC ,AC 与 x 轴交于点 D ,试判断△ABC 的形状,并直接写出点 D的坐标;
(3)在坐标平面内, x 轴的下方,是否存在这样的点 P ,使得△ACP 是等腰直角三角形?如果存在,直接写出点P 的坐标;如果不存在,试说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ACB和△ECD都是等腰直角三角形,△ACB的锐角顶点A在△ECD的斜边DE上,若AE=
,AC=
,则DE=____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)(3分)如图(1),正方形AEGH的顶点E、H在正方形ABCD的边上,直接写出HD∶GC∶EB的结果(不必写计算过程);
(2)(3分)将图(1)中的正方形AEGH绕点A旋转一定角度,如图(2),求HD∶GC∶EB;
(3)(2分)把图(2)中的正方形都换成矩形,如图(3),且已知DA∶AB=HA∶AE=m: n,此时HD∶GC∶EB的值与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程).

-
科目: 来源: 题型:
查看答案和解析>>【题目】整顿药品市场、降低药品价格是国家的惠民政策之一.根据国家《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%.根据相关信息解决下列问题:
(1)降价前,甲乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元?
(2)降价后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15%、对乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D,使∠BDC=30°.
(1)求证:DC是⊙O的切线;
(2)若AB=2,求DC的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某天早晨,王老师从家出发步行前往学校,途中在路边一饭店吃早餐,如图所示是王老师从家到学校这一过程中所走的路程S(米)与时间t(分)之间的关系.
(1)学校离他家 米,从出发到学校,王老师共用了 分钟;
(2)王老师吃早餐用了多少分钟?
(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?吃完早餐后的平均速度是多少?

相关试题