【题目】(1)如图1,a∥b,则∠1+∠2=
(2)如图2,AB∥CD,则∠1+∠2+∠3= ,并说明理由
(3)如图3,a∥b,则∠1+∠2+∠3+∠4=
(4)如图4,a∥b,根据以上结论,试探究∠1+∠2+∠3+∠4+…+∠n= (直接写出你的结论,无需说明理由)
![]()
参考答案:
【答案】(1)、180°;(2)、360°;(3)、540°;(4)、(n﹣1)180°
【解析】
试题分析:(1)、根据两直线平行,同旁内角互补得出答案;(2)、过点E作EF∥AB,根据平行线的性质得出答案;(3)、过∠2、∠3的顶点作a的平行线,然后根据平行线的性质得出答案;(4)、过∠2、∠3…的顶点作a的平行线,然后根据平行线的性质得出答案.
试题解析:(1)∵a∥b,
∴∠1+∠2=180°;
(2)过点E作EF∥AB,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠1+∠AEF=180°,∠CEF+∠2=180°,
∴∠1+∠AEF+∠CEF+∠2=180°+180°,
即∠1+∠2+∠3=360°;
(3)如图,过∠2、∠3的顶点作a的平行线,
则∠1+∠2+∠3+∠4=180°×3=540°;
(4)如图,过∠2、∠3…的顶点作a的平行线,
则∠1+∠2+∠3+∠4+…+∠n=(n﹣1)180°.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】分解因式:(m+1)(m﹣9)+8m= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】操作:将一把三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q,设A、P两点间的距离为x.
探究:
(1)当点Q在边CD上时,线段PQ与线段PB之间有怎样的大小关系?试证明你观察到的结论;
(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数关系式,并写出x的取值范围;(3)当点P在线段AC上滑动时,△PCQ是否能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应x的值;如果不可能,试说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.

(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分∠DAB;
(2)如图②,当直线l与⊙O相交于点E,F时,求证:∠DAE=∠BAF.
-
科目: 来源: 题型:
查看答案和解析>>【题目】给出下列说法:①三条线段组成的图形叫三角形;②三角形的角平分线是射线;③三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外;④任何一个三角形都有三条高、三条中线、三条角平分线;⑤三角形的三条角平分线交于一点,且这点在三角形内.正确的说法有( )
A. 1个 B. 2个 C. 3个 D. 4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】随着某市养老机构建设稳步推进,拥有的养老床位不断增加,养老床位数从2014年底的2万个增长到2016年底的2.88万个,则该市这两年拥有的养老床位数的平均年增长率为_____________;
-
科目: 来源: 题型:
查看答案和解析>>【题目】一定在△ABC内部的线段是( )
A. 锐角三角形的三条高、三条角平分线、三条中线
B. 钝角三角形的三条高、三条中线、一条角平分线
C. 任意三角形的一条中线、二条角平分线、三条高
D. 直角三角形的三条高、三条角平分线、三条中线
相关试题