【题目】如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D两点(A在D的下方),AD=2,将△ABC绕点P旋转180°,得到△MCB.
(1)求B、C两点的坐标;
(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;
(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.
![]()
参考答案:
【答案】(1)B(﹣
﹣1,0),C(
﹣1,0);
(2)(﹣2,1);
(3)∠MQG的大小不变,始终等于135°,理由见解析.
【解析】试题分析:(1)连接PA,运用垂径定理及勾股定理即可求出圆的半径,从而可以求出B、C两点的坐标.
(2)由于圆P是中心对称图形,显然射线AP与圆P的交点就是所需画的点M,连接MB、MC即可;易证四边形ACMB是矩形;过点M作MH⊥BC,垂足为H,易证△MHP≌△AOP,从而求出MH、OH的长,进而得到点M的坐标.
(3)易证点E、M、B、G在以点Q为圆心,QB为半径的圆上,从而得到∠MQG=2∠MBG.由等腰直角三角形和等腰三角形的性质得出∠PCA=67.5°,从而得到∠MBG=67.5°,进而得到∠MQG=135°,即∠MQG的度数是定值.
试题解析:解:(1)连接PA,如图1所示.
∵PO⊥AD,∴AO=DO.
∵AD=2,∴OA=1.
∵点P坐标为(﹣1,0),∴OP=1,∴PA=
=
=
,∴BP=CP=
,∴OB=
+1,OC=
﹣1,∴B(﹣
﹣1,0),C(
﹣1,0).
(2)连接AP,延长AP交⊙P于点M,连接MB、MC.
如图2所示,线段MB、MC即为所求作.
四边形ACMB是矩形.理由如下:
∵△MCB由△ABC绕点P旋转180°所得,∴四边形ACMB是平行四边形.
∵BC是⊙P的直径,∴∠CAB=90°,∴平行四边形ACMB是矩形.
过点M作MH⊥BC,垂足为H,如图2所示.
在△MHP和△AOP中,∵∠MHP=∠AOP,∠HPM=∠OPA,PM=PM,∴△MHP≌△AOP(AAS),∴MH=OA=1,PH=PO=1,∴OH=2,∴点M的坐标为(﹣2,1).
(3)在旋转过程中∠MQG的大小不变.
∵四边形ACMB是矩形,∴∠BMC=90°.
∵EG⊥BO,∴∠BGE=90°,∴∠BMC=∠BGE=90°.
∵点Q是BE的中点,∴QM=QE=QB=QG,∴点E、M、B、G在以点Q为圆心,QB为半径的圆上,如图3所示,∴∠MQG=2∠MBG.
∵OA=OP=1,∠AOP=90°,∴∠APC=45°,∵PC=PA,∴∠PCA=∠PAC=
(180°-45°)=67.5°,∴∠MBC=∠BCA=67.5°,∴∠MQG=135°,∴在旋转过程中∠MQG的大小不变,始终等于135°.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①是一个长为4a、宽为b的长方形,沿图中虚线用剪刀将其平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图②)
自主探索:
(1)仔细观察图形,完成下列问题
①图②中的阴影部分的面积为_____;
②观察图②,请你写出(a+b)2、(a-b)2、ab之间的等量关系是_____;
知识运用:
(2)若x-y=5,xy=
,根据(1)中的结论,求(x+y)2的值;知识延伸
(3)根据你探索发现的结论,完成下列问题:
设A=
,B=x+2y-3计算(A-B)2-(A+B)2的结果.

-
科目: 来源: 题型:
查看答案和解析>>【题目】将正面分别标有数字1、2、3的三张卡片洗匀后,背面朝上放在桌面上请完成下列各题
(1)随机抽取1张,求抽到卡片数字是奇数的概率;
(2)随机抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?
(3)在(2)的条件下,试求组成的两位数是偶数的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】“珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:

(1)小明家到学校的路程是多少米?
(2)小明在书店停留了多少分钟?
(3)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?
(4)我们认为骑单车的速度超过300米/分钟就超越了安全限度.问:在整个上学的途中哪个时间段小明骑车速度最快,速度在安全限度内吗?
-
科目: 来源: 题型:
查看答案和解析>>【题目】在一幅长为80cm,宽为50cm的矩形风景画的四周镶一条相同宽度的边框,制成一幅挂图,如图所示,设边框的宽为xcm,如果整个挂图的面积是5400cm2 ,那么下列方程符合题意的是( )

A. (50-x)(80-x)=5400 B. (50-2x)(80-2x)=5400
C. (50+x)(80+x)=5400 D. (50+2x)(80+2x)=5400
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,反比例函数y=
(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N 两点,△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是( )
A. 6
B. 10 C. 2
D. 2
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两商场以同样价格出售同样的商品,并且各自又推出不同的优惠方案:
甲商场:购物超过200元后,超出200元的部分按90%收费;
乙商场:购物超过100元后,超出100元的部分按95%收费.
设小李在同一商场购买商品的原价总和为
元,则甲商场消费的金额为
元,乙商场消费的金额为
元.(1)请分别求出
,
与
之间的函数关系式;(2)当
元时,小李在哪家商场购物更合算?
相关试题