【题目】如图,横坐标为1的点A在反比例函数y=
上(x>0)的图象上,将线段AO绕着点A逆时针旋转90°得到线段AB,且点B也落在反比例函数y=
(x>0)的图象上
(1)求反比例函数的解析式;
(2)求线段AO扫过的面积.
![]()
参考答案:
【答案】(1)y=
;(2)
π.
【解析】
(1)过A作AE⊥x轴,过B作BD⊥AE,利用同角的余角相等得到一对角相等,再由一对直角相等,且AO=AB,利用AAS得出三角形AOE与三角形ABD全等,由确定三角形的对应边相等得到BD=AE=m,AD=OE=1,进而表示出ED及OE+BD的长,即可表示出B坐标;由A与B都在反比例图象上,得到A与B横纵坐标乘积相等,列出关系式,于是得到结论;
(2)根据扇形的面积公式即可得到结论.
(1)过A作AE⊥x轴,过B作BD⊥AE.设AE= m.
∵∠OAB=90°,∴∠OAE+∠BAD=90°.
∵∠AOE+∠OAE=90°,∴∠BAD=∠AOE.
在△AOE和△BAD中,
,∴△AOE≌△BAD(AAS),∴AE=BD=m,OE=AD=1,∴DE=m﹣1,OE+BD=m+1,则B(m+1,m﹣1).
∵A与B都在反比例图象上,得到m=(m+1)(m﹣1),解得:m
(负值舍去),∴A(1,
),∴k
,∴反比例函数的解析式为:y
;
(2)∵OE=1,AE
,∴OA
,∴线段AO扫过的面积
π.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在Rt△ABC中,∠ABC=90°,∠C=30°,AC=8,BD为边AC上的中线,点E在边BC上,且BE:BC=3:8,点P在Rt△ABC的边上运动,当PD:AB=1:2时,EP的长为_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)先化简,再求值:
,其中a=2;(2)如图,在ABCD中,E为BC边上的中点,将△ABE沿AE折叠,点B的对应点为点F,延长AF与CD交于点G,求证:GC=GF.

-
科目: 来源: 题型:
查看答案和解析>>【题目】乒乓球是我国的国球,比赛采用单局11分制,是一种世界流行的球类体育项目,比赛分团体、单打、双打等数种在某站公开赛中,某直播平台同时直播4场男单四分之一比赛,四场比赛的球桌号分别为“T1”、“T2”、“T3”、“T4”(假设4场比赛同时开始),小宁和父亲准备一同观看其中的某一场比赛,但两人的意见不统一,于是采用抽签的方式决定,抽签规则如下:将正面分别写有数字“1、“2”、“3”、“4”的四张卡片(除数字不同外,其余均相同,数字“1”、“2”、“3”、“4”分别对应球桌号(“T1”、“T2”、“T3”、“T4”(背面朝上洗匀,父亲先从中随机抽取一张,小宁再从剩下的3张卡片中随机抽取一张,比较两人所抽卡片上的数字,观看较大的数字对应球桌的比赛
(1)下列事件中属于必然事件的是
A.抽到的是小宁最终想要看的一场比赛的球桌号
B.抽到的是父亲最终想要看的一场比赛的球桌号
C.小宁和父亲抽到同一个球桌号
D.小宁和父亲抽到的球桌号不一样
(2)用列表法或树状图法求小宁和父亲最终观看“T4”球桌比赛的概率
-
科目: 来源: 题型:
查看答案和解析>>【题目】水果基地为了选出适应市场需求的小西红柿秧苗,在条件基本相同的情况下,把两个品种的小西红柿秧苗各300株分别种植在甲、乙两个大棚,对市场最为关注的产量和产量的稳定性进行了抽样调查,过程如下:
收集数据从甲、乙两个大棚中分别随机收集了相同生产周期内25株秧苗生长出的小西红柿的个数:
甲:26,32,40,51,44,74,44,63,73,74,81,54,62,41,33,54,43,34,51,63,64,73,64,54,33
乙:27,35,46,55,48,36,47,68,82,48,57,66,75,27,36,57,57,66,58,61,71,38,47,46,71
整理数据按如下分组整理样本数据:
个数(x)
株数(株)
大棚
25≤x<35
35≤x<45
45≤x<55
55≤x<65
65≤x<75
75≤x<85
甲
5
5
4
1
乙
2
4
6
5
2
(说明:45个以下为产量不合格,45个及以上为产量合格,其中45≤x<65个为产量良好,65≤x<85个为产量优秀)
分析数据两组样本数据的平均数、众数和方差如下表所示:
大棚
平均数
众数
方差
甲
53
236.24
乙
53
57
215.04
得出结论
(1)补全上述表格;
(2)可以推断出 大棚的小西红柿秩苗品种更适应市场需求,理由为 (至少从两个不同的角度说明推断的合理性);
(3)估计乙大棚的300株小西红柿秧苗中产量优秀的有多少株?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠BAC=90°,以AB为直径的⊙O交BC于点D,点E是
上一点,连接DE,AE,CE,已知CE=AC.(1)判断直线CE与⊙O的位置关系,并证明;
(2)若AB=AC=4,求DE的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】改革开放40年来,中国已经成为领先世界的基建强国,如图①是建筑工地常见的塔吊,其主体部分的平面示意图如图②,点F在线段HG上运动,BC∥HG,AE⊥BC,垂足为点E,AE的延长线交HG于点G,经测量,∠ABD=11°,∠ADE=26°,∠ACE=31°,BC=20m,EG=0.6m.
(1)求线段AG的长度;
(2)连接AF,当线段AF⊥AC时,求点F和点G之间的距离.
(所有结果精确到0.1m.参考数据:tan11°≈0.19,tan26°≈0.49,tan31°≈0.60)

相关试题