【题目】如图,直钱AB、CD相交于点O,OD平分∠AOF,OE⊥CD于O.∠EOA=50°.求∠BOC、∠BOE、∠BOF的度数.
![]()
参考答案:
【答案】40°; 130° ; 100°.
【解析】
由垂直的定义可求∠AOD=40,根据对顶角相等求出∠BOC=40,由∠BOE=∠EOC+∠BOC可求出∠BOE的度数,由角平分线的定义可求出∠DOF=∠AOD=40°,根据∠BOF=∠COD-∠BOC-∠DOF可求出∠BOF的度数.
解:∵OE⊥CD于O
∴∠EOD=∠EOC=90°
∵∠AOD=∠EOD-∠AOE,∠EOA=50°
∴∠AOD=90-50=40
∴∠BOC=∠AOD=40
∵∠BOE=∠EOC+∠BOC
∴∠BOE=90°+40°=130°
∵OD平分∠AOF
∴∠DOF=∠AOD=40°
∴∠BOF=∠COD-∠BOC-∠DOF=180°-40°-40°=100°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE垂直于PD,交PD的延长线于点C,连接AD并延长,交BE于点E.

(1)求证:AB=BE;
(2)若PA=2,cosB=
,求⊙O半径的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图有四条互相不平行的直线l1、l2、l3、l4所截出的七个角,关于这七个角的度数关系,下列结论正确的是( )

A. ∠2=∠4+∠7 B. ∠3=∠1+∠7
C. ∠1+∠4+∠6=180° D. ∠2+∠3+∠5=360°
-
科目: 来源: 题型:
查看答案和解析>>【题目】一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为( )
A. (﹣5,3) B. (1,﹣3) C. (2,2) D. (5,﹣1)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知直线EF与AB交于点M,与CD交于点O,OG平分∠DOF,若∠COM=120°,∠EMB=
∠COF. 
(1)求∠FOG的度数;
(2)写出一个与∠FOG互为同位角的角;
(3)求∠AMO的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知如图,在长方形ABCD中,点E是AD的中点,连结BE,将△ABE沿着BE翻折得到△FBE,EF交BC于点H,延长BF、DC相交于点G,若DG=16,BC=24,则AB=________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知一次函数y1=kx+b的图像经过点(0,-2),(2,2).
(1)求一次函数的表达式,并在所给直角坐标系中画出此函数的图像;;
(2)根据图像回答:当x 时,y1=0;
(3)求直线y1=kx+b、直线y2=-2x+4与y轴围成的三角形的面积.

相关试题