【题目】在平面直角坐标系xOy中,抛物线y=﹣x2+2mx﹣m2+1的对称轴是直线x=1.
(1)求抛物线的表达式;
(2)点D(n,y1),E(3,y2)在抛物线上,若y1<y2 , 请直接写出n的取值范围;
(3)设点M(p,q)为抛物线上的一个动点,当﹣1<p<2时,点M关于y轴的对称点都在直线y=kx﹣4的上方,求k的取值范围.
参考答案:
【答案】
(1)
解:∵抛物线的对称轴为x=1,
∴x=﹣
=﹣
=1.
解得:m=1.
∴抛物线的解析式为y=﹣x2+2x
(2)
解:将x=3代入抛物线的解析式得y=﹣32+2×3=﹣3.
将y=﹣3代入得:﹣x2+2x=﹣3.
解得:x1=﹣1,x2=3.
∵a=﹣1<0,
∴当n<﹣1或n>3时,y1<y2
(3)
解:设点M关于y轴对称点为M′,则点M′运动的轨迹如图所示:
![]()
∵当P=﹣1时,q=﹣(﹣1)2+2×(﹣1)=﹣3.
∴点M关于y轴的对称点M1′的坐标为(1,﹣3).
∵当P=2时,q=﹣22+2×2=0,
∴点M关于y轴的对称点M2′的坐标为(﹣2,0).
①当k<0时,
∵点M关于y轴的对称点都在直线y=kx﹣4的上方,
∴﹣2k﹣4≤0.
解得:k≥﹣2.
②当k>0时,
∵点M关于y轴的对称点都在直线y=kx﹣4的上方,
∴k﹣4≤﹣3.
解得;k≤1.
∴k的取值范围是﹣2≤k≤1
【解析】(1)由抛物线的对称轴方程可求得m=1,从而可求得抛物线的表达式;(2)将x=3代入抛物线的解析式,可求得y2=3,将y=3代入抛物线的解析式可求得x1=﹣1,x2=3,由抛物线的开口向下,可知当当n<﹣1或n>3时,y1<y2;(3)先根据题意画出点M关于y轴对称点M′的轨迹,然后根据点M关于y轴的对称点都在直线y=kx﹣4的上方,列出关于k的不等式组即可求得k的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC是等边三角形,以AB为直径作⊙O,交BC边于点D,交AC边于点F,作DE⊥AC于点E.

(1)求证:DE是⊙O的切线;
(2)若△ABC的边长为4,求EF的长度. -
科目: 来源: 题型:
查看答案和解析>>【题目】根据下列要求,解答相关问题.
请补全以下求不等式﹣2x2﹣4x>0的解集的过程.
①构造函数,画出图象:根据不等式特征构造二次函数y=﹣2x2﹣4x;并在下面的坐标系中(图1)画出二次函数y=﹣2x2﹣4x的图象(只画出图象即可).
②求得界点,标示所需,当y=0时,求得方程﹣2x2﹣4x=0的解为多少?;并用锯齿线标示出函数y=﹣2x2﹣4x图象中y>0的部分.
③借助图象,写出解集:由所标示图象,可得不等式﹣2x2﹣4x>0的解集为﹣2<x<0.请你利用上面求一元一次不等式解集的过程,求不等式x2﹣2x+1≥4的解集.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平行四边形ABCD的对角线AC、BD相交于点O,EF过点O且与AB、CD分别相交于点E、F,连接EC.
(1)求证:OE=OF;
(2)若EF⊥AC,平行四边形ABCD的周长是22,求△BEC的周长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,在长方形ABCD中,AB=12 cm,BC=6 cm.点P沿AB边从点A开始向点B以2 cm/s的速度移动;点Q沿DA边从点D开始向点A以1 cm/s的速度移动.

设点P,Q同时出发,用t(s)表示移动的时间.
(发现) DQ=________cm,AP=________cm.(用含t的代数式表示)
(拓展)(1)如图①,当t=________s时,线段AQ与线段AP相等?
(2)如图②,点P,Q分别到达B,A后继续运动,点P到达点C后都停止运动.
当t为何值时,AQ=
CP?(探究)若点P,Q分别到达点B,A后继续沿着A—B—C—D—A的方向运动,当点P与点Q第一次相遇时,请直接写出相遇点的位置.
-
科目: 来源: 题型:
查看答案和解析>>【题目】将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1。在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换。若骰子的初始位置为图1所示的状态,那么按上述规则连续完成14次变换后,骰子朝上一面的点数是_____________________。

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,点O是等边△ABC内的任一点,连接OA,OB,OC.
(1)如图1,已知∠AOB=150°,∠BOC=120°,将△BOC绕点C按顺时针方向旋转60°得△ADC.
①∠DAO的度数是多少?
②用等式表示线段OA,OB,OC之间的数量关系,并证明;
(2)设∠AOB=α,∠BOC=β.
①当α,β满足什么关系时,OA+OB+OC有最小值?请在图2中画出符合条件的图形,并说明理由;
②若等边△ABC的边长为1,直接写出OA+OB+OC的最小值.
相关试题