【题目】如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1,平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;
(2)若将△A1B1C1绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标.
![]()
参考答案:
【答案】(1)图形见解析;(2)P点坐标为(
,﹣1).
【解析】
(1)分别作出点A、B关于点C的对称点,再顺次连接可得;由点A的对称点A2的位置得出平移方向和距离,据此作出另外两个点的对应点,顺次连接可得;
(2)连接A1A2、B1B2,交点即为所求.
(1)如图所示:A1(3,2)、C1(0,2)、B1(0,0);A2(0,-4)、B2(3,﹣2)、C2(3,﹣4).
![]()
(2)将△A1B1C1绕某一点旋转可以得到△A2B2C2,旋转中心的P点坐标为(
,﹣1).
-
科目: 来源: 题型:
查看答案和解析>>【题目】问题:探究函数的图象与性质.小华根据学习函数的经验,对函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:在函数y=|x|﹣2中,自变量x可以是任意实数;
Ⅰ如表是y与x的几组对应值.
y
…
﹣3
﹣2
﹣1
0
1
2
3
…
x
…
1
0
﹣1
﹣2
﹣1
0
m
…
①m= ;
②若A(n,8),B(10,8)为该函数图象上不同的两点,则n= ;
Ⅱ如图,在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点.并根据描出的点,画出该函数的图象;根据函数图象可得:
①该函数的最小值为 ;
②该函数的另一条性质是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,将边长为1的正方形ABCD压扁为边长为1的菱形ABCD.在菱形ABCD中,∠A的大小为α,面积记为S.

(1)请补全表:
α
30°
45°
60°
90°
120°
135°
150°
S
1
(2)填空:
由(1)可以发现单位正方形在压扁的过程中,菱形的面积随着∠A大小的变化而变化,不妨把单位菱形的面积S记为S(α).例如:当α=30°时,S=S(30°)=
;当α=135°时,S=S(135°)=
.由上表可以得到S(60°)=S( °);S(150°)=S( °),…,由此可以归纳出S(180°﹣α)=( °).(3)两块相同的等腰直角三角板按图2的方式放置,AD=
,∠AOB=α,试探究图中两个带阴影的三角形面积是否相等,并说明理由(注:可以利用(2)中的结论). -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,动点P从点A开始沿AB边向B以1cm/s的速度移动(不与点B重合);动点Q从B点开始沿BC边向点C以2cm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,出发多少秒后,四边形APQC的面积为16cm2?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.
(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)若AC=6,BC=8,OA=2,求线段DE的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,P为反比例函数y=
(k>0)在第一象限内图象上的一点,过点P分别作x轴,y轴的垂线交一次函数y=﹣x﹣4的图象于点A、B.若∠AOB=135°,则k的值是( )
A. 2 B. 4 C. 6 D. 8
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.
(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;
(2)求矩形菜园ABCD面积的最大值.

相关试题