【题目】如图,△OAC中,以O为圆心,OA为半径作⊙O,作OB⊥OC交⊙O于B,垂足为O,连接AB交OC于点D,∠CAD=∠CDA.
(1)判断AC与⊙O的位置关系,并证明你的结论;
(2)若OA=5,OD=1,求线段AC的长.![]()
参考答案:
【答案】(1)线段AC是⊙O的切线。理由见解析(2)12
【解析】
解:(1)线段AC是⊙O的切线。理由如下:
∵∠CAD=∠CDA(已知),∠BDO=∠CDA(对顶角相等),
∴∠BDO=∠CAD(等量代换)。
又∵OA=OB(⊙O的半径),∴∠B=∠OAB(等边对等角)。
∵OB⊥OC(已知),∴∠B+∠BDO=∠OAB+∠CAD=90°,即∠OAC=90°。
∴线段AC是⊙O的切线。
(2)设AC=x.
∵∠CAD=∠CDA(已知),∴DC=AC=x(等角对等边)。
∵OA=5,OD=1,∴OC=OD+DC=1+x;
∵由(1)知,AC是⊙O的切线,
∴在Rt△OAC中,根据勾股定理得,OC2=AC2+OA2,即(1+x)2=x2+52,解得x=12。
∴AC=12.
(1)根据已知条件“∠CAD=∠CDA”、对顶角∠BDO=∠CDA可以推知∠BDO=∠CAD;然后根据等腰三角形OAB的两个底角相等、直角三角形的两个锐角互余的性质推知
∠B+∠BDO=∠OAB+∠CAD=90°,即∠OAC=90°。所以线段AC是⊙O的切线。
(2)根据“等角对等边”可以推知AC=DC,所以由图形知OC=OD+CD;然后利用(1)中切线的性质可以在在Rt△OAC中,根据勾股定理来求AC的长度。
-
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数y=2
x2的图象如图所示,点O为坐标原点,点A在y轴的正半轴上,点B、C在函数图象上,四边形OBAC为菱形,且∠OBA=120°,则点C的坐标为______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某水果店老板用400元购进一批葡萄,由于葡萄新鲜很快售完,老板又用500元购进第二批葡萄,所购数量与第一批相同,但每千克进价比第一批贵2元.
(1)求第一批葡萄进价为每千克多少元;
(2)若老板以每千克11元的价格将两批葡萄全部售完,可以盈利多少元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).

(1)在方格纸中作出与△ABC关于原点对称的△A1B1C1,并写出点A
、B
、C
的坐标;(2)求出过A
、B
、O三点的抛物线的对称轴. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线y=﹣x2+
x+2与直线y=
x+2相交于点C和D,点P是抛物线在第一象限内的点,它的横坐标为m,过点P作PE⊥x轴,交CD于点F.(1)求点C和D的坐标;
(2)求抛物线与x轴的交点坐标;
(3)如果以P、C、O、F为顶点的四边形是平行四边形,求m的值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线y=﹣x2﹣2x+3用配方法化成y=a(x﹣h)2+k的形式是________,抛物线与x轴的交点坐标是________,抛物线与y轴的交点坐标是________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙底端C的距离为0.7米.如果梯子的顶端沿墙面下滑0.4米,那么点B将向左滑动多少米?

相关试题